Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Ngọc Ánh

Cho x,y,z là ba số nguyên dương và Q=\(\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-2}}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}\). Tìm giá trị nhỏ nhất của Q?

Thắng Nguyễn
6 tháng 2 2017 lúc 23:22

Để dễ nhìn ta đặt \(\hept{\begin{cases}\sqrt{2x-3}=a\\\sqrt{y-2}=b\\\sqrt{3z-1}=c\end{cases}\left(a,b,c\ge0\right)}\)

Vậy BĐT đầu tương đương \(T=\frac{1}{a}+\frac{4}{b}+\frac{16}{c}+a+b+c\)

Áp dụng BĐT C-S dạng Engel ta có:

\(\frac{1}{a}+\frac{4}{b}+\frac{16}{c}=\frac{1^2}{a}+\frac{2^2}{b}+\frac{4^2}{c}\ge\frac{\left(1+2+4\right)^2}{a+b+c}=\frac{49}{a+b+c}\)

Tiếp tục dùng AM-GM ta có: \(VT\ge\frac{49}{a+b+c}+\left(a+b+c\right)\ge2\sqrt{\frac{49}{a+b+c}\cdot\left(a+b+c\right)}=2\sqrt{49}=14\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=1\\b=2\\c=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}}\)

Thắng Nguyễn
6 tháng 2 2017 lúc 22:38

nhìn qua thì chắc AM-GM+Cauchy-schwarz chắc thế :)


Các câu hỏi tương tự
Nguyễn Thị Ngọc Ánh
Xem chi tiết
My Nguyễn
Xem chi tiết
Mai Thành Đạt
Xem chi tiết
Minh Phạm
Xem chi tiết
My Nguyễn
Xem chi tiết
My Nguyễn
Xem chi tiết
My Nguyễn
Xem chi tiết
Lê Minh Tuân
Xem chi tiết
Charlie Nhật Nam
Xem chi tiết