cho x, y,z đều khác 0 thỏa mãn x+y+z=xyz và1/x+1/y+1/z=căn 3
Tính giá trị biểu thức: M=1/x^2+1/y^2+1/z^2
Cho xyz khác 0 thỏa mãn: x^3y^3 + y^3z^3 + z^3x^3 = 3x^2y^2z^2
Tính giá trị của biểu thức: M = ( 1+ x/y )( 1 + y/z )( 1 + z/x )
Cho x; y; z ≠ 0 thỏa mãn x + y + z = 0. Tính giá trị biểu thức: A = x y x 2 + y 2 − z 2 + y z y 2 + z 2 − x 2 + z x z 2 + x 2 − y 2
A. A = 1 2
B. A = - 1 2
C. A = - 3 2
D. A = 3 2
cho x,y,z khác 0 thỏa mãn x+y+z=xyz và 1/x+1/y+1/z=\(\sqrt{3}\)
tính giá trị của 1/x2+1/y2+1/z2
cho xyz khác 0 thoả x+y+z=xyz và 1/x+1/y+1/z= căn bậc của 3.tính P=1/x^2+1/y^2+1/z^2
Cho các số thực x ; y ; z thỏa mãn x^2-y=a ; y^2-z=b ; z^2-x=c .Tính giá trị biểu thức sau theo a; b; c.
P=x^3 (z-y^2) + y^3 (x-z^2) + z^3 (y-x^2) + xyz (xyz-1)
Cho x2+y2+z2=2 tìm GTLN P=x2/x2+yz+x+1 + y+z/x+y+z+1 + 1/xyz+3
Cho x,y,z thoả mãn xyz=1 và x+y+z = 1:x + 1:y + 1:z
Tính giá trị biểu thức B= (x5-1)(y5-1)(z2016-1)
Cho 3 số x,y,z thỏa mãn xyz=1.Tính giá trị của biểu thức :
\(M=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}\)