\(\frac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)
\(\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2\right)+c^2\)
Khai triển và rút gọn ta được:
\(2abxy+2acxz+2bcyz=a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2\)
Gom các hạng tử lai thành hằng đẳng thức:
\(\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(cy-bz\right)^2=0\)
Mà bình phương của các số thì \(\ge\)0 nó chỉ bằng 0 khi và chỉ khi từng hạng tử =0
nên: \(\hept{\begin{cases}ay-bx=0\\az-cx=0\\cy-bz=0\end{cases}\Rightarrow\hept{\begin{cases}ay=bx\rightarrow\frac{a}{x}=\frac{b}{y}\\az=cx\rightarrow\frac{a}{x}=\frac{c}{z}\\cy=bz\rightarrow\frac{c}{z}=\frac{b}{y}\end{cases}}}\)
=>Đpcm