cho x,y,z>0
chứng minh rằng
\(\sqrt{x^2+xy+2y^2}+\sqrt{y^2+yz+2z^2}+\sqrt{z^2+zx+2x^2}\ge2\left(x+y+z\right)\)
\(\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)\) >=4(xy+yz+zx)
x,y,z >0
Cho các số dương x,y,z thỏa mãn: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Tìm giá trị lớn nhất biểu thức \(Q=\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{zx\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Khẩn !!!!!
Cho a,b,c>0 CMR:
\(\frac{\left(x+y+z\right)^2}{2}\ge x\sqrt{yz}+y\sqrt{zx}+z\sqrt{xy}\)
CMR: \(\left(x+y+z\right)^2\ge3\left(x\sqrt{yz}+y\sqrt{zx}+z\sqrt{xy}\right)\) với \(x,y,z\ge0\)
Cho x, y, z > 0. Tìm GTLN của \(A=\frac{\sqrt{xy}}{z+2\sqrt{xy}}+\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}\)
x,y,z là các số thực dương thỏa mãn xy+yz+zx=2024. Tìm min \(P=\dfrac{\sqrt{x^2+2024}+\sqrt{y^2+2024}+\sqrt{z^2+2024}}{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)
cho x,y,z>0 và xy+yz+xz=1
tính Q=\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}}\)