ta có x+y+z=0 suy ra (x+y+z)2=0
do đó x2+y2+z2=0(vì xy+yz+xz=0)
vì thế x=y=z
ta có x+y+z=0 suy ra (x+y+z)2=0
do đó x2+y2+z2=0(vì xy+yz+xz=0)
vì thế x=y=z
cho x,y,z>0
chứng minh rằng
\(\sqrt{x^2+xy+2y^2}+\sqrt{y^2+yz+2z^2}+\sqrt{z^2+zx+2x^2}\ge2\left(x+y+z\right)\)
cho x+y++z=0 và xy+yz+zx=,chứng minh x=y=z
Cho x+y+z=0
xy +yz + zx =0
Chứng minh rằng x=y=z
Cho x,y,z > 0 thỏa mãn xy + yz +zx = 1.Chứng minh
\(\frac{x-y}{z^2+1}\)+\(\frac{y-z}{x^2+1}\)+\(\frac{z-x}{y^2+1}\)=0
chứng minh A=(xy+zx+1)/(xy+x+y+1)+(yz+zy+1)/(yz+y+z+1)+(zx+zx+1)/(zx+x+z+1) không thuộc x, y, z
Chứng minh rằng:\(x^2+y^2+z^2-xy+yz+zx=\frac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{2}\) và \(x^2+y^2+z^2-xy+yz+zx=0\) khi nào?
cho x, y, z khác 1 chứng minh giá trị sau không phụ thuộc vào biến x, y, z.( xy+2x+1/xy+x+y+1)+(yz+2y+1/yz+y+z+1)+(zx+2z+1/zx+z+x+1)
cho x;y;z khác 0, thỏa mãn xy+yz+zx=0 và x+y+z=-1
tính gt biểu thức : M= \(\frac{xy}{z}\) + \(\frac{zx}{y}\)+ \(\frac{yz}{x}\)
Cho x,y,z khác 0 thỏa mãn xy+yz+zx=0 và x+y+z=-1 Tinh giá trị của M= \(\frac{xy}{z}\)+ \(\frac{zx}{y}\) + \(\frac{yz}{x}\)