1. Cho \(x,y,z>0\) và \(x^3+y^2+z=2\sqrt{3}+1\). Tìm GTNN của biểu thức \(P=\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\)
2. Cho \(a,b>0\). Tìm GTNN của biểu thức \(P=\dfrac{8}{7a+4b+4\sqrt{ab}}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
1. Cho \(x,y,z>0\), \(x+y\le1\) và \(xyz=1\). Tìm GTLN của biểu thức \(P=\dfrac{1}{1+4x^2}+\dfrac{1}{1+4y^2}-\sqrt{z+1}\)
2. Cho \(x,y,z>0\), \(xyz=x+y+z\). Tìm GTNN của biểu thức \(P=xy+yz+zx-\sqrt{1+x^2}-\sqrt{1+y^2}-\sqrt{1+z^2}\) (dùng phương pháp lượng giác hóa)
Cho x, y, z là các số thực dương thoả mãn xyz=1. Tìm GTNN của P = \(\frac{x^3+1}{\sqrt{x^4+y+z}}+\frac{y^3+1}{\sqrt{y^4+z+x}}+\frac{z^3+1}{\sqrt{z^4+x+y}}-\frac{8\left(xy+yz+zx\right)}{xy+yz+zx+1}\)
Cho 3 số thực dương \(x,y,z\) thỏa mãn \(x+y+z=3\). Tìm GTLN của biểu thức \(P=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)
cho x,y,z>0 thỏa mãn x+y+z=xyz . CMR : \(\frac{2}{\sqrt{x^2+1}}+\frac{1}{\sqrt{y^2+1}}+\frac{1}{\sqrt{z^2+1}}\le\frac{9}{4}\)
Tìm GTNN của \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\) biết x , y , z > 0 và
\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\)
Cho x,y,z là các số thực dương, thỏa mãn \(x+y+z\le1\)
Tìm giá trị nhỏ nhất của biểu thức \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\)
cho x,y,z>0 và x+y+z=3 Tìm Min của : \(P=\frac{x+y}{\sqrt{x^2+y^2+6z}}+\frac{y+z}{\sqrt{y^2+z^2+6x}}+\frac{z+x}{\sqrt{z^2+x^2+6y}}\)