\(A=\sqrt{x^3+8}+\sqrt{y^3+8}+\sqrt{z^3+8}\)
\(A=\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}+\sqrt{\left(y+2\right)\left(y^2-2x+4\right)}+\sqrt{\left(z+2\right)\left(z^2-2z+4\right)}\)
\(\sqrt{\frac{1}{2}}A=\sqrt{\left(x+2\right)\left(x^2-2x+4\right).\frac{1}{2}}+\sqrt{\left(y+2\right)\left(y^2-2x+4\right).\frac{1}{2}}+\sqrt{\left(z+2\right)\left(z^2-2z+4\right).\frac{1}{2}}\)\(\sqrt{\frac{1}{2}}A=\sqrt{\left(x+2\right)\left(\frac{x^2}{2}-x+2\right)}+\sqrt{\left(y+2\right)\left(\frac{y^2}{2}-x+2\right)}+\sqrt{\left(z+2\right)\left(\frac{z^2}{2}-z+2\right)}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{\frac{1}{2}}A\le\frac{x+2+\frac{x^2}{2}-x+2+y+2+\frac{y^2}{2}-y+2+z+2+\frac{z^2}{2}-z+2}{2}=\frac{12+\frac{x^2+y^2+z^2}{2}}{2}=\frac{12+\frac{48}{2}}{2}=\frac{12+24}{2}=\frac{36}{2}=18\)
\(\Leftrightarrow A\le18:\sqrt{\frac{1}{2}}=18\sqrt{2}\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2=\frac{x^2}{2}-x+2\\y+2=\frac{y^2}{2}-y+2\\z+2=\frac{z^2}{2}-z+2\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=4x\\y^2=4y\\z^2=4z\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(x-4\right)=0\\y\left(y-4\right)=0\\z\left(z-4\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=4\\z=4\end{cases}\left(v\text{ì}x,y,z>0\right)}}\)
Vậy \(A_{max}=18\sqrt{2}\Leftrightarrow x=y=z=4\)
Tham khảo nhé~