chứng minh rằng nếu x/y=y/z=z/t thì (x+y+x/y+z+t)^3=x/y với y,z,t khác 0 và y+z+t khác 0
cho x/y+z+t = y / x+z+t = z/x+y+t = t / x+y+z
và P = x+y/z+t + y+z/x+t + z+t / x+y + x+t/y+z ( các mẫu khác 0 )
chứng minh rằng P nguyên
Chứng minh rằng:M=x/x+y+z+y/x+y+t+z/y+z+t+t/x+z+t với x,y,z,t khác thuộc N khác 0 có giá trị ko phải là số tự nhiên
cho x,y,z,t là 4 số thực khác 0 thỏa mãn y^2=xz,z^2=yt và y^3+z^3+t^ khác 0 cmR y^3+z^3+x^3/y^3+z^3+t^3=x/t
cho \(^{y^2}\)=x.z,\(z^2\)=y.t.Với x,y,z,t khác 0,y+z khác 0, \(y^3\)+\(z^3\) khác \(t^3\).Chứng minh \(x^3\)+\(y^3\)-2\(z^3\)/\(y^3\)+\(z^3\)-2\(t^3\)=(\(\dfrac{\text{x+y-2z}}{x+z-2t}\))
cho biểu thức M=x/(x+y+z) +y/(x+y+t) +z/(y+z+t) +t/(x+z+t) với x,y,z,t là các số tự nhiên khác 0. Chứng minh M10 <1025
Cho x,y,z khác 0 thỏa mãn (n e N)
y+z+t-nx/x = z+t+x-ny/y = t+x+y-nz/z = x+y+z-nt/t
và x+y+z+t=2012 .Tính P =x+2y-3z+t
cho M=(x/x+y+z)+(y/x+y+t)+(z/y+z+t)+(t/x+z+t) với x,y,z là các số tự nhiên khác 0
chứng minh M10<1025
Cho x,y,z,t khác 0 thỏa mãn \(\frac{x+y+z-3t}{x}=\frac{y+z+t-3x}{x}=\frac{z+t+x-3y}{y}=\frac{t+x+Y-3z}{z}\) và x+y+z+t=2012
Tính A= x+2y-3z+t