Cho x,y,z > 0, xyz = 1
CMR (x+y)(y+z)(x+z) >= 2(1+x+y+z)
Em xin hướng giải thồi ạ em cảm ơn.
Giả sử x, y, z là các số thực thỏa mãn điều kiện x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức: \(M=x^4+y^4+z^4+12\left(1-x\right)\left(1-y\right)\left(1-z\right)\)
Cho x, y, z > 0 và x+y+z = 3. Tìm giá trị nhỏ nhất của: a) P = 1/(x^2+1) + 1/(y^2+1 + 1/(z^2+1)
GIÚP VỚI Ạ!!!
Bài 1: Cho x,y,z thỏa mãn 3x+y+z=12. Tìm giá trị nhỏ nhất của P=\(5x^2+3y^2+z^2-2xy+2yz-6x-6y+14\) .
1) Cho \(x,y,z\) thỏa mãn điều kiện \(x^2+y^2+z^2=3\) . Tìm Giá trị nhỏ nhất của tổng \(T=x+y+z+\frac{1}{xyz}\).
2) Cho \(x,y,z\) thỏa mãn điều kiện \(x^2+y^2+z^2=3\) . Tìm Giá trị nhỏ nhất của tổng \(T=x+y+z+\frac{3}{xyz}\).
3) Cho \(x,y,z\) thỏa mãn điều kiện \(x^2+y^2+z^2=1\) . Tìm Giá trị nhỏ nhất của tổng \(T=x+y+z+\frac{1}{xyz}\)
Cho \(x,y,z\) không âm, không đồng thời bằng \(0\) và thỏa \(\dfrac{1}{x+1}+\dfrac{1}{y+2}+\dfrac{1}{z+3}\le1\). Tìm giá trị nhỏ nhất của \(P=x+y+z+\dfrac{1}{x+y+z}\)
cho x,y là các số thực dương thỏa mãn 3(x^4+y^4+z^4)-7(x^2+y^2+z^2)+12=0 . Tìm giá trị nhỏ nhất của biểu thức P=\(\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}\)
Giải hộ mình bài toán sau:
1. Cho 3 số x, y, z thỏa mãn:
xy + yz+ zx = 8
x + y + z = 5
Tìm giá trị nhỏ nhất, lỡn nhất của x.
2. Cho 3 số x, y, z thỏa mãn:
xy + yz + zx = 1
x2+y2+z2=2
Tìm giá trị lớn nhất nhỏ nhất của x.
Cho x,y,z là các số dương thỏa mãn xyz=1
Tìm giá trị nhỏ nhất của biểu thức \(E=\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)