Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Trần Nam Khánh

cho x,y>0 và x+y=1 tìm min p=\(\dfrac{x}{\sqrt{1-x}}\)+\(\dfrac{y}{\sqrt{1-y}}\)

Akai Haruma
30 tháng 10 2023 lúc 19:37

Lời giải:

Do $x+y=1$ nên:

$P=\frac{x}{\sqrt{x+y-x}}+\frac{y}{\sqrt{x+y-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}$
$=\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{x}}$

$\geq \frac{(x+y)^2}{x\sqrt{y}+y\sqrt{x}}=\frac{1}{x\sqrt{y}+y\sqrt{x}}$ (áp dụng BĐT Cauchy-Schwarz)

Áp dụng BĐT Bunhiacopxky:

$(x\sqrt{y}+y\sqrt{x})^2\leq (x+y)(xy+xy)=2xy(x+y)\leq \frac{(x+y)^2}{2}(x+y)=\frac{1}{2}$

$\Rightarrow x\sqrt{y}+y\sqrt{x}\leq \frac{\sqrt{2}}{2}$

$\Rightarrow P\geq \frac{1}{x\sqrt{y}+y\sqrt{x}}\geq \frac{1}{\frac{\sqrt{2}}{2}}=\sqrt{2}$

Vậy $P_{\min}=\sqrt{2}$. Giá trị này đạt tại $x=y=\frac{1}{2}$.


Các câu hỏi tương tự
Người Vô Danh
Xem chi tiết
Trần Thị Thanh Tâm
Xem chi tiết
hello7156
Xem chi tiết
nguyễn lê
Xem chi tiết
Bảo Khanh Đàm
Xem chi tiết
Quân Nguyễn
Xem chi tiết
Thành Nhân Võ
Xem chi tiết
Vi Thị Hòa
Xem chi tiết
Xem chi tiết