Cho x,y >0 và xy=1
Tìm Min \(P=x^2+3x+y^2+3y+\frac{9}{x^2+y^2+1}\)
tìm min A=\(x^2+3x+y^2+3y+\frac{9}{x^2+y^2+1}\)với x,y>0 và xy=1
a) Cho x;y dương thỏa mãn xy=1. Tìm GTNN: D= x2+3x+y2+3y+\(\frac{9}{x^2+y^2+1}\)
b) Với \(1\le x\le\frac{4\sqrt{3}}{3}\)Tìm GTLN của y=\(8\sqrt{x-1}+x\sqrt{16-3x^2}\)
Cho các số x, y, z > 0 thỏa mãn x + y + z = 1. Tìm GTLN của biểu thức:
\(A=\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}+2017\left(xy+yz+zx\right)\)
1) Cho x,y>0 và x+y=< 1 Tìm min A = \(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
2) Cho x >= 3y và x;y > 0 Tìm min A = \(\frac{x^2+y^2}{xy}\)
3) Cho x >= 4y và x;y > 0 Tìm min A = xy/(x^2 +y^2)
Cho x,y,z nguyen duong thoa man x+y-z+1=0
Tim GTLN cua \(P=\frac{x^3y^3}{\left(x+yz\right)\left(y+xz\right)\left(z+xy\right)^2}\)
a \(\left(x-1\right)^2-\left(y+1\right)^2=0\)
\(x+3y-5=0\)
b \(xy-2x-y+2=0\)
3x+y=8
c \(\left(x+y\right)^2-4\left(x+y\right)=12\)
\(\left(x-y\right)^2-2\left(x-y\right)=3\)
d \(2x-y=1\)
\(2x^2+xy-y^2-3y=-1\)
cho x;yla 2 sô khac nhau x^2+2y^2+2xy+3x+3y-4=0 tim gtnn va GTLN cua A=x^2+y^2
Cho x >0 thoả mãn: x^2 -3x-1 và x+y=1.Tìm GTNN:
A= x^2 +y^2 C=\(\frac{1}{x+2y}+\frac{1}{2x+y}\)
B=3x^2+3y^2+4xy. D=\(\frac{1}{x^2}+\frac{2}{xy}\)