Cho x,y > 0 thoả mãn x + y = 1. Hãy tìm giá trị nhỏ nhất của biểu thức: \(P=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
Cho x, y>0 thỏa mãn x+y=1.
Tìm GTNN của biểu thức: \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\).
cho x>0; y>0 thỏa mãn x+y=1. Tìm GTNN của biểu thức P=\(\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)
cho 3 số thực dương x;y;z thỏa mãn x+y+z<=3/2. tìm GTNN của biểu thức:
\(p=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
cho 3 số thực dương x;y;z thỏa mãn x+y+z<=3/2. tìm GTNN của biểu thức :
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
Cho số thực dương x,y,z thỏa mãn : x+y+z = 1. Tìm GTNN của biểu thức:\(A=\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Cho x,y,z>0 thỏa mãn: x+y+z=3. Tìm GTNN của \(P=\frac{\left(x+1\right)^2.\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2.\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2.\left(x+1\right)^2}{y^2+1}\)
cho 3 số thực dương thỏa mãn x+y+z<hoạc = 3/2
tìm GTNN của biểu thức:
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
cho 3 số thực dương z;y;z thỏa mãn x+y+z<= 3/2
tìm GTNN của biểu thức:
\(p=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\)