x,y,z>0. CMR \(x^2+y^2+z^2+\frac{9xyz}{x+y+z}\ge2\left(xy+yz+zx\right)\)
Từ bất đẳng thức trên + x+y+z=1 làm sao để suy ra \(9xyz\ge4\left(xy+yz+zx\right)-1\)
Cho x; y; z >0, thoả mãn: 1/xy+ 1/yz+1/zx =1
Q= x/√yz × (x^2 +1)+ y/√zx × (y^2 +1) + z/√xy × ( z^2 +1)
Cho x, y, z > 0 và x+y+z=1.
CMR : \(\dfrac{1-x^2}{x+yz}+\dfrac{1-y^2}{y+zx}+\dfrac{1-z^2}{z+xy}\ge6\)
cho x,y,z>0 và xyz=1. cmr x/(xy+x+1)^2+y/(yz+y+1)^2+z/(zx+z+1)^2 >= 1/x+y+z
Cho x,y,z >0 tm xy+yz+zx=xyz. Tìm GTLN của:
\(A=\frac{1}{\sqrt{x^2-xy+y^2}}+\frac{1}{\sqrt{y^2-yz+z^2}}+\frac{1}{\sqrt{z^2-zx+x^2}}\)
Cho x,y,z>0; \(x^2+y^2+z^2+4xyz=2\left(xy+yz+zx\right)\).Tìm GTLN của P=x(1-y)(1-z)
Cho x, y, z > 0 và x+y+z=1. Tìm MIN của :
P= \(\dfrac{1}{x^2+y^2+z^2}+\dfrac{2023}{xy+yz+zx}\)
Cho x,y,z > 0 ; x + y + z = 1
CMR: \(\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{yz}{x+yz}}+\sqrt{\frac{zx}{y+zx}}\le\frac{3}{2}\)
1.Giải hệ pt
1)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\\xy+yz+zx=3\\\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}=x\end{cases}}\)
2)\(\hept{\begin{cases}xy+yz+zx=3\\\left(x+y\right)\left(y+z\right)=\sqrt{3}z\left(1+y^2\right)\\\left(y+z\right)\left(z+x\right)=\sqrt{3}x\left(1+z^2\right)\end{cases}}\)
3)\(\hept{\begin{cases}xy+yz+zx=3\\1+x^2\left(y+z\right)+xyz=4y\\1+y^2\left(z+x\right)+xyz=4z\end{cases}}\)
cho x,y,z >0 thỏa: x+y+z=1
cm:
\(\frac{350}{xy+yz+zx}+\frac{386}{x^2+y^2+z^2}>2015\)