đặt \(A=x^2+y^2+2x\left(y-1\right)+2y=x^2+y^2+2xy-2x+2y=\left(x+y\right)^2-2\left(x-y\right)\)
do A là số chính phương => \(\left(x+y\right)^2-2\left(x+y\right)\)cũng là số chính phương
\(\Leftrightarrow-2\left(x-y\right)=0\)
\(\Leftrightarrow x=y\)
đặt \(A=x^2+y^2+2x\left(y-1\right)+2y=x^2+y^2+2xy-2x+2y=\left(x+y\right)^2-2\left(x-y\right)\)
do A là số chính phương => \(\left(x+y\right)^2-2\left(x+y\right)\)cũng là số chính phương
\(\Leftrightarrow-2\left(x-y\right)=0\)
\(\Leftrightarrow x=y\)
Cho x,y ϵ N thỏa mãn 3x2+x=4y2+y
CMR A= 2xy + 4.(x+y)3 + x2+ y2 là số chính phương
Cho hai số nguyên dương x, y thỏa mãn x 2 +y 2 +2x(y−1) +2y+1 là số chính phương. Chứng minh rằng x = y
Cho biết x;y;z là các số tự nhiên đôi 1 nguyên tố cùng nhau thỏa mãn: 1/x+1/y=1/z.
CMR: x+y là số chính phương
Cho x,y , z là các số nguyên tố cùng nhau thỏa mãn \(\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\).CMR: x+y là số chính phương.
Bài 1. Cho x, y là hai số nguyên dương thỏa mãn x2 + 2y là một số chính phương. Chứng minh rằng x2 + y là tổng của hai số chính phương
Bài 2. Cho a, b là hai số nguyên. Chứng minh rằng 2a2+2b2 là tổng của hai số chính phương
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a^2 - b, b^2 - c, c^2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x^2 + y^2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n^2 - 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a^2 + 3b; b^2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a^2 + b^2 + c^2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
cho x;y;z là 3 số nguyên dương và nguyên tố cùng nhau thỏa mãn \(\frac{1}{x}+\frac{1}{y}=\frac{1}{z}.\)CMR x+y là số chính phương
Bài tập 4: CMR không có các số x, y, z thỏa mãn mỗi đẳng thức sau:
a) 2x2 + y2 - 2xy + x + 2 = 0
b) x2 + 9y2 + 4z2 - 2x + 12y - 4z +20 = 0
c) –x2 - 26y2 +10xy – 20y - 150 = 0