\(A=x^2+3xy+4y^2=\frac{7}{16}x^2+\frac{9}{16}x^2+3xy+4y^2=\frac{7}{16}x^2+\left(\frac{3}{4}x+2y\right)^2\)
\(\ge\frac{7}{16}.1^2+0^2=\frac{7}{16}\)
Dấu \(=\)khi \(\hept{\begin{cases}x=1\\\frac{3}{4}x+2y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-\frac{3}{8}\end{cases}}\).