Áp dụng BĐT Cô-si dạng Engel , ta có :
\(1=\frac{1}{x}+\frac{4}{y}\ge\frac{\left(1+2\right)^2}{x+y}=\frac{9}{x+y}\)
\(\Rightarrow x+y\ge9\)
nên Min x+y = 9 \(\Leftrightarrow x=3;y=6\)
Áp dụng BĐT Cô-si dạng Engel , ta có :
\(1=\frac{1}{x}+\frac{4}{y}\ge\frac{\left(1+2\right)^2}{x+y}=\frac{9}{x+y}\)
\(\Rightarrow x+y\ge9\)
nên Min x+y = 9 \(\Leftrightarrow x=3;y=6\)
CHo 2 số dương x và y thỏa mãn \(\frac{1}{x}+\frac{4}{y}=1\)
Tính GTNN của P = x + y
cho x, y là các số thực dương thỏa mãn x+y=4
tìm GTNN của : \(M=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}\)
cho x,y là 2 số dương thỏa mãn x+y=1 , tìm GTNN của A= \(\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)
Cho x,y là 2 số dương thỏa mãn x+y=1.Tìm GTNN của A =\(\frac{1}{x^2+y^2}+\frac{3}{4xy}\)
Tìm GTNN của A=x+y biết x,y là các số dương thỏa mãn \(\frac{a}{x}+\frac{b}{y}=1\)(a và b là các hằng số dương)
Cho các số dương x, y thỏa mãn x.y = 1. Tìm GTNN của biểu thức:
P = \[(x + y + 1).({x^2} + {y^2}) + \frac{4}{{x + y}}\]
Cho x, y là 2 số thực dương thỏa mãn điều kiện \(x+y\le\frac{4}{3}\) . Tìm GTNN của biểu thức \(A=x+y+\frac{1}{x}+\frac{1}{y}\)
cho x,y,z là các số thực dương thỏa mãn x,y,z>0 thỏa mãn x(x-z)+y(y-z) =0 tìm GTNN của \(P=\frac{x^3}{x^2+z^2}+\frac{y^3}{y^2+z^2}+\frac{x^2+y^2+4}{x+y}\)
Cho x,y,z là số thưc dương thỏa mãn x+y+z=3
Tìm GTNN của
Q=\(\frac{x+1}{1+y^2}+\frac{y+1}{1+z^2}+\frac{z+1}{1+x^2}\)