Ta có : \(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}.10=5\)
Vậy MIN P = 5 khi x = y = \(\frac{\sqrt{10}}{2}\)
Ta có : \(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}.10=5\)
Vậy MIN P = 5 khi x = y = \(\frac{\sqrt{10}}{2}\)
Cho 3 số thực dương x, y, z thỏa mãn: 1 x 2 + 1 y 2 + 1 z 2 = 1 . Tìm giá trị nhỏ nhất của biểu thức: P = y 2 z 2 x ( y 2 + z 2 ) + z 2 x 2 y ( z 2 + x 2 ) + x 2 y 2 z ( x 2 + y 2 )
Cho x, y ∈ R thỏa mãn x + y + xy = 5 4 . Tìm giá trị nhỏ nhất của biểu thức A = x 2 + y 2
Gỉa sử x,y là các số dương thỏa mãn đẳng thức x+y=\(\sqrt{10}\). Tìm giá trị của x và y để biểu thức P=\(\left(x^4+1\right)\left(y^4+1\right)\) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy.
V (0,5 điểm). Với x, y là các số dương thỏa mãn: x + y = 6
Tìm giá trị nhỏ nhất của: P = x2 + y2 + 33/xy
cho x; y dương thỏa mãn x+y=\(\sqrt{10}\)
tìm x; y để P = (x4+1)(y4+1) đạt giá trị nhỏ nhất tìm nhỏ nhất
Giúp e vs plzz sắp thi vào 10 chuyên rồi
Cho x,y là các số thực thay đổi thỏa mãn điều kiện x2 +y2+xy=3.Tìm giá trị lớn nhất và nhỏ nhất của biểu thức x2+y2-xy
Cho x,y là các số thực dương thỏa mãn
\(\sqrt{x}+\sqrt{y}=1\)
Tìm giá trị nhỏ nhất và giá trị lớn nhất của
\(x\sqrt{x}+y\sqrt{y}\)
Giả sử x, y là các số dương thỏa mãn đẳng thức x + y = (căn bậc hai của 10). Tìm giá trị của x và y để biểu thức P = (x^4 + 10(y^4 + 1) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy
Giả sử x ; y là các số dương thỏa mãn đẳng thức \(x+y=\sqrt{10}\). Tìm giá trị của x và y để biểu thức
\(P=\left(x^4+1\right)\left(y^4+1\right)\)đạt giá trị nhỏ nhất .Tìm giá trị nhỏ nhất ấy.