Cho các số x,y thỏa mãn điều kiện \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\). Chứng minh rằng:\(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=1\)
Cho x, y, z > 0
Chứng minh :
\(\sqrt{x\left(y+1\right)}+\sqrt{y\left(z+1\right)}+\sqrt{z\left(x+1\right)}\le\frac{3}{2}\sqrt{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
Cho x,y thỏa: \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)
Chứng minh: \(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=1\)
Chắc chắn đúng đề ạ!
Cho 3 số dương x,y,z thỏa mãn: xy+yz+zx=1. Chứng minh rằng:
\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+z^2\right)\left(1+y^2\right)}{1+z^2}}=2\)
Cho \(x+y+z=\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)Chứng minh: \(\frac{\sqrt{x}}{1+x}+\frac{\sqrt{y}}{1+y}+\frac{\sqrt{z}}{1+z}=\frac{2}{\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}\)
\(\frac{\sqrt{x}\left(\sqrt{x}-2\right)+\sqrt{y}\left(\sqrt{y}+2\right)-2\sqrt{xy}+1}{\sqrt{x}\left(\sqrt{x}-2\sqrt{y}\right)+\left(\sqrt{y}+1\right)\left(\sqrt{y}-1\right)}\)
Cho x,y biết \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)
CMR \(x\left(\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=1\)
Cho x, y, z là các số thực dương thõa mãn xy + yz + zx = 1
a) Chứng minh rằng: \(1+x^2=\left(x+y\right)\left(x+z\right)\)
b) Tính giá trị biểu thức P = \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Cho \(\hept{\begin{cases}x,y,z>0\\xy+yz+zx=1\end{cases}}\). Chứng minh rằng:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge3+\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x^2}}+\sqrt{\frac{\left(y+z\right)\left(y+x\right)}{y^2}}+\sqrt{\frac{\left(z+x\right)\left(z+y\right)}{z^2}}\)