a. ta có :
\(\left(x+y\right)^2+\left(x-y\right)^2=4^2+\left(-5\right)^2\) hay \(2\left(x^2+y^2\right)=16+25\Leftrightarrow x^2+y^2=\frac{41}{2}\)
v. ta có : \(\left(x+y\right)^2-\left(x-y\right)^2=4^2-5^2\) hay \(4xy=-9\Leftrightarrow xy=-\frac{9}{4}\)
mà \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=4^3-3.\left(-\frac{9}{4}\right).4=64+27=91\)
c.\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(\frac{41}{2}\right)^2-2\left(-\frac{9}{4}\right)^2=\frac{3281}{8}\)
x+y+x-y=4-5=-1
2x=-1
x=-1/2
y=4+1/2=9/2
a)x2+y2=(-1/2)2+(9/2)2
=1/4+81/4
=21,25
b)x3+y3=(-1/2)3+(9/2)3
= -1/8 + 729/8
=91
c)x4+y4=-(1/2)4+(9/2)4
=1/16+6561/16
=6562/16
=410,125