Xét VT = 1/ab + 1/(a² + b²) = 1/2ab + 1/(a² + b²) + 1/2ab
Áp dụng bđt: 1/x + 1/y ≥ 4/(x + y) với x, y >0 và với a + b = 1
ta có: 1/2ab + 1/(a² + b²) ≥ 4/(2ab + a² + b²) = 4/(a + b)² = 4
Áp dụng bđt 4xy ≤ (x + y)²
ta có: 1/2ab = 2/4ab ≥ 2/(a + b)² = 2 => VT ≥ 4 + 2 = 6
Dấu "=" xảy ra khi a = b và a + b = 1 nên a = b = ½
Nhók Silver Bullet: đúng là "bản sao" của VICTOR_Nobita Kun
Ta thấy:
\(x^2.y^2\left(x^2+y^2\right)\le x+y\)
\(\Rightarrow x^2.y^2\left(x^2+y^2\right)\le2\)