Ta có \(x^3=4+2\sqrt{2}+4-2\sqrt{2}+3\sqrt[3]{\left(4+2\sqrt{2}\right)\left(4-2\sqrt{2}\right)}x\)
=> \(x^3=8+6x\Rightarrow x^3-6x-10=-2\Rightarrow\left(x^3-6x-10\right)=-2^{2019}\)
^_^
Ta có \(x^3=4+2\sqrt{2}+4-2\sqrt{2}+3\sqrt[3]{\left(4+2\sqrt{2}\right)\left(4-2\sqrt{2}\right)}x\)
=> \(x^3=8+6x\Rightarrow x^3-6x-10=-2\Rightarrow\left(x^3-6x-10\right)=-2^{2019}\)
^_^
1/Cho \(x+y+z+\sqrt{xyz}=4\)
Tính giá trị biểu thức \(T=\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-x\right)\left(4-z\right)}+\sqrt{z\left(4-x\right)\left(4-y\right)}-\sqrt{xyz}\)
2/Cho \(x=\sqrt[3]{4+2\sqrt{2}}+\sqrt[3]{4-2\sqrt{2}}\)
Tính giá trị biểu thức \(F=\left(x^3-6x-10\right)^{2019}\)
3/Cho \(x=\sqrt{\frac{1}{2\sqrt{3}-2}-\frac{3}{2\sqrt{3}+2}}\)
Tính giá trị biểu thức \(P=x^2+\frac{x-1}{2}\)
4/Cho \(x=\sqrt{28-10\sqrt{3}}\)
Tính giá trị biểu thức \(F=\frac{2x^4-21x^3+55x^2-32x-4012}{x^2-10x+20}\)
\(Bài\) \(1\)\(Cho\)\(a,b,c\ge0;a+b+c=6.\)TÌm giá trị ngỏ nhất của biểu thức:
\(M=\sqrt{\left(a+1\right)^3}+\sqrt{\left(b+2\right)^3}+\sqrt{\left(c+2\right)^3}\)
Bài 2: \(Cho\)\(x=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\).Tính giá trị biểu thức:
\(A=\left(x^6-3x^5-8x^4+16x^3+25x^2-2x-3\right)^{2020}+2019\left(x^4-4x^3+x^2+6x-3\right)^{2021}\)
Bài 3: Giải các phương trình sau:
\(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
Tính giá trị của biểu thức:
\(A=\sqrt[3]{\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}}{2}}+\sqrt[3]{\frac{x^3-3x-\left(x^2-1\right)\sqrt{x^2-4}}{2}}\)với \(x=\sqrt[3]{2019}\)
a) Tính giá trị biểu thức:
N=\(\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
b)Rút gọn biểu thức:
A=\(\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}-2}{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}+2}\),trị x>2
CMR biểu thức sau ko phụ thuộc vào giá trị của x :
A=\(\frac{6x-\left(x+6\right)\sqrt{x}-3}{2\left(x-4\sqrt{x}+3\right)\left(2-\sqrt{x}\right)}-\frac{3}{-2x+10\sqrt{x}-12}-\frac{1}{3\sqrt{x}-x-2}\)
Rút gọn rồi tính giá trị của các biểu thức sau:
a) \(\sqrt{4\left(1+6x+9x^2\right)^2}\) tại x = \(-\sqrt{2}\)
b) \(\sqrt{9a^2\left(b^2+4-4b\right)}\) tại a =2, b =\(-\sqrt{3}\)
Cho \(x=\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)-\frac{2\sqrt{6}+\sqrt{3}}{\sqrt{8}+1}\)
Tính giá trị biểu thức \(A=x^5-3x^4-3x^3+6x^2-20x+2022\)
1, Rút gọn biểu thức: \(A=\dfrac{-3}{4}.\sqrt{9-4\sqrt{5}}.\sqrt{\left(-8\right)^2.\left(2+\sqrt{5}\right)^2}\)
2, Với \(x=\sqrt{4+2\sqrt{3}}\). Tính giá trị biểu thức \(P=x^2-2x+2020\)
Bài 1 : Cho biểu thức R = \(\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\cdot\left(\sqrt{x}+3\right)}{x-9}\right]:\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a/ Rút gọn R
b/ Tìm các giá trị của x để R < -1
Bài 2 : Cho \(\sqrt{x^2-5x+14}-\sqrt{x^2-5x+10}=2\)Tính giá trị biểu thức M =\(\sqrt{x^2-5x+14}+\sqrt{x^2-5x+10}\)
Bài 3 : Tìm GTNN của : Q = \(\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)