Sửa đề c/m : \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
Ta có \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
=> \(\frac{a+2b+c}{x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}\)
Từ (1) => \(\frac{a+2b+c}{x}=\frac{4a+2b-2c}{2y}=\frac{4a-4b+c}{z}=\frac{a+2b+c+4a+2b-2c+4a-4b+c}{x+2y+z}\)
\(=\frac{9a}{x+2y+z}\)(2)
Từ (1) => \(\frac{2a+4b+2c}{2x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}=\frac{2a+4b+2c+2a+b-c-4a+4b-c}{2x+y-z}\)
\(=\frac{9b}{2x+y-z}\)(3)
Từ (1) => \(\frac{4a+8b+4c}{4x}=\frac{8a+4b-4c}{4y}=\frac{4a-4b+c}{z}\)
\(=\frac{4a+8a+4c-8a-4b+4c+4a-4b+c}{4x-4y+z}=\frac{9c}{4x-4y+z}\)(4)
Từ (2)(3)(4) => \(\frac{9a}{x+2y+z}=\frac{9b}{2x+y-z}=\frac{9c}{4x-4y+z}\)
=> \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)(đpcm)