Chứng minh rằng: \(\left(x+y+z\right)^3-x^3-y^3-z^3=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Chứng minh rằng :
\(\left(x+y+z\right)^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Chứng minh rằng:
\(\left(x+y+z\right)^3-x^3-y^3-z^3=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Chứng minh rằng với mọi \(x,y\) ta luôn có
\(\left(x,y+1\right)\left(x^2y^2-xy+1\right)+\left(x^3-1\right)\left(1-y^3\right)=x^3+y^3\)
Nhanh lên ạ giúp mình zới :>
Cho ba số dương x,y,z thỏa mãn xyz <=1 . Chứng minh rằng
\(\frac{x\left(1-y^3\right)}{y^3}+\frac{y\left(1-z^3\right)}{z^3}+\frac{z\left(1-x^3\right)}{x^3}\ge0\)0
Chứng minh rằng: \(\frac{x^2-y^2}{x^3+y^{^3}}.\left(\left(x-\frac{x^2+y}{y}\right):\left(\frac{1}{x}-\frac{1}{y}\right)\right)=x\)
Cho \(x+y+z=0\). Chứng minh rằng :
\(5\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)=6\left(x^5+y^5+z^5\right)\)
Cho x và y là hai số khác 0 và thỏa mãn x+y khác 0. Chứng minh rằng:
\(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{x^3y^3}\)
Cho x=y+1. Chứng minh rằng:
a)\(x^3-y^3-3xy=1\)
b)\(\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)=x^{16}-y^{16}\)