A = 4x^2 + 4y^2 + z^2 - 4xz - 4yz + 8xy + 4y^2 + 4z^2 + x^2 - 4xy - 4xz + 8yz + 4x^2 + 4z^2 + y^2 - 4xy - 4yz + 8xz
= 9(x^2+y^2+z^2) = 9.5 = 45
A = 4x^2 + 4y^2 + z^2 - 4xz - 4yz + 8xy + 4y^2 + 4z^2 + x^2 - 4xy - 4xz + 8yz + 4x^2 + 4z^2 + y^2 - 4xy - 4yz + 8xz
= 9(x^2+y^2+z^2) = 9.5 = 45
Cho x,y,z dương thoả xyz=1.chứng minh x^2y^2/(2x^2+y^2+3x^2y^2) + y^2z^2/(2y^2+z^2+3y^2z^2) + z^2x^2/2z^2+x^2+3z^2x^2 <= 1/2
help
Cho các số dương x;y;z thỏa mãn \(xyz=1\) . Chứng minh rằng :
\(\frac{x^2y^2}{2x^2+y^2+3x^2y^2}+\frac{y^2z^2}{2y^2+z^2+3y^2z^2}+\frac{x^2z^2}{2z^2+x^2+3z^2x^2}\le\frac{1}{2}\)
Cho \(X^2+Y^2+Z^2=5\).Tính GTBT \(A=\left(2x+2y-z\right)^2+\left(2y+2z-x\right)^2+\left(2z+2x-y\right)^2\)
Cho B=x^4+y^4+z^4-2x^2y^2-2x^2z^2-2z^2y^2.
a,Phân tích B thành nhân tử
cho x,y,z là 3 cạnh của 1 tam giác , CMR :
2x^2y^2+2^2z^2+2z^2x^2-x^4-y^4-z^4>0
Cho các số dương x,y, z thỏa mãn xyz=1
CMR: \(\frac{x^2y^2}{2x^2+y^2+3x^2y^2}\)+\(\frac{y^2z^2}{2y^2+z^2+3y^2z^2}\)+\(\frac{z^2x^2}{2z^2+x^2+3z^2x^2}\)\(\le\)\(\frac{1}{2}\)
Cho (I): 4 x 2 + 4x – 9 y 2 + 1 = (2x + 1 + 3y)(2x + 1 – 3y)
(II): 5 x 2 – 10xy + 5 y 2 – 20 z 2 = 5(x + y + 2z)(x + y – 2z).
A. (I) đúng, (II) sai
B. (I) sai, (II) đúng
C. (I), (II) đều sai
D. (I), (II) đều đúng
cho \(x^2+y^2+z^2=5\) . Tính giá trị của biểu thức sau:
A=\(\left(2x+2y-z\right)^2+\left(2y+2z-x\right)^2+\left(2z+2x-y\right)^2\)
Cho \(x^2+y^2+z^2=5\). Tính giá trị của biểu thức sau:
\(A=\left(2x+2y-z\right)^2+\left(2y+2z-x\right)^2+\left(2z+2x-y\right)^2\)