cho \(x^2=a^2+b^2+ab\) và a+b=c chứng minh \(2x^4=a^4+b^4+c^4\)
Cho x2=a2+b2+ab và a+b=c Chứng minh rằng : 2x4=a4+b4+c4
1) Xác định a và b để cho P=x^4+2x^3+ax^2+2x+b là bình phương cuả một đa thức
2) Cho x=a+1. Chứng minh rằng: x^16-a^16=(x^8+a^8)(x^2+a^2)(x+a)
4) Cho a+b+c=0. Chứng minh rằng: 2(a^4+b^4+c^4)=(a^2+b^2+c^2)^2
5) Với giá trị nào của a và b thì đa thức:
f(x)=x^4-3x^3+3x^2+ax+b chia hết cho đa thức g(x)=x^2-3x+4. Tìm đa thức thương.
6) Tìm x ; y ; z trong đẳng thức: x^2+4y^2+9z^2+2x+4y+6z+3=0 (pt)
7) Với a ; b ; c là độ dài 3 cạch của một tam giác. Chứng minh rằng biểu thức M=4b^2c^2-(b^2+c^2-a^2)^2>0
8) Chứng minh rằng (a-b) chia hết cho 6 <=> (a^3+b^3) chia hết cho 6
1. Cho \(x^2=a^2+b^2+ab\) và \(a+b=c\).
Chứng minh rằng : \(2x^4=a^4+b^4+c^4\)
2. Tính \(\left(x-2y\right)^6\)
Cho x2=a2+b2+ab và a+b=c.Chứng minh rằng :2x4=a4+b4+c4
1. Cho \(x^2=a^2+b^2+ab\) và \(a+b=c\).
Chứng minh rằng : \(2x^4=a^4+b^4+c^4\)
2. Tính \(\left(x-2y\right)^6\)
1. Cho \(x^2=a^2+b^2+ab\) và \(a+b=c\).
Chứng minh rằng : \(2x^4=a^4+b^4+c^4\)
2. Tính \(\left(x-2y\right)^6\)
b1. cho a+b+c=0. Chứng minh rằng:
a) (ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2
b) a^4+b^4+c^4=2(ab+bc+ca)^2
b2. Chứng minh các đẳng thức sau:
a) (2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)=2^32-1
b)100^2+103^2+105^2+94^2=101^2+98^2+96^2+107^2
b3. tìm x biết:
a) (2x-3)^2+(3x-1)^2=13(x-1)(x+3)
b)(3x-5)^2-2(2x+1)^2=(x-1)(x+2)
c)(x+1)(x-1)(x^2+1)-(x+3)(x-3)(x^2+9)=5
Chứng minh rằng:
a) Nếu (a+b+c+d)(a-b-c-+d)=(a-b+c-d)(a+b-c-d) thì \(\frac{a}{b}\)=\(\frac{c}{d}\)(a,b,c,d khác 0)
b)Nếu a+b+c=0 thì a3+b3+c3=3abc
c)Cho x2=a2+b2+ab và a+b+c=0. Chứng minh 2x4=a4+b4+c4