Lời giải:
Ta có:
\(P=x^3(z-y^2)+y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)\)
\(=x^3(z-y^2)+xy^3+yz^3+x^2y^2z^2-y^3z^2-z^3x^2-xyz\)
\(=x^3(z-y^2)+(xy^3-xyz)+(yz^3-y^3z^2)+(x^2y^2z^2-z^3x^2)\)
\(=x^3(z-y^2)+xy(y^2-z)+yz^2(z-y^2)+x^2z^2(y^2-z)\)
\(=(y^2-z)(-x^3+xy-yz^2+x^2z^2)\)
\(=(y^2-z)[x^2(z^2-x)-y(z^2-x)]\)
\(=(y^2-z)(z^2-x)(x^2-y)=bca\)
Do đó $P$ có giá trị không phụ thuộc vào biến.