x^2+y^2+z^2= xy+yz+zx
=> 2( x^2+y^2+z^2)= 2( xy+xz+yz)
=> 2x^2+2y^2+2z^2= 2xy+2xz+2yz
=> x^2+x^2+y^2+y^2+z^2+z^2= 2xy+2xz+2yz
=> x^2+x^2+y^2+y^2+z^2+z^2-2xy-2xz-2yz= 0
=> x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2=0
=> (x-y)^2+(y-z)^2+(z-x)^2 =0
ta thấy (x-y)^2>= 0
(z-x)^2>=0
(y-z)^2>=0
nên (x-y)^2+(y-z)^2+(z-x)^2 >=0
dấu bằng xảy ra khi và chỉ khi
x-y=0 => x=y
y-z=0=> y=z
z-x=0 => z=x
=> x=y=z