Cho 3 số x;y;z thỏa mãn: \(\frac{x}{2012}=\frac{y}{2013}=\frac{z}{2014}\)
Chứng minh rằng \(\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)
Cho các số x,y,z thỏa mãn: \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}.\)
Chứng minh rằng \(4\left(x-y\right)\left(y-z\right)=\left(z-x\right)^2.\)
a) Cho 3 số x, y, z là 3 số khác 0 thỏa mãn điều kiện:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Hãy tính giá trị của biểu thức: \(B=\left(1+\frac{x}{y}\right)\cdot\left(1+\frac{y}{z}\right)\cdot\left(1+\frac{z}{x}\right)\)
b) Tìm x, y, z biết:
\(\left|x-\frac{1}{2}\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|=0\)
Tìm x,y,z \(\inℚ\)thỏa mãn \(\left(x-\frac{1}{3}\right)\cdot\left(y-\frac{1}{2}\right)\cdot\left(z-5\right)=0\)và x+2=y+1=z+3
cho 3 số x,y,z đôi 1 khác nhau và chứng minh rằng :
\(\dfrac{y-z}{\left(x-y\right)\cdot\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\cdot\left(y-x\right)}+\dfrac{y-x}{\left(z-x\right)\cdot\left(z-y\right)}=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\)
Cho 3 số x,y,z là 3 số khác 0 thỏa mãn điều kiện:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Hãy tính giá trị biểu thức:
B=\(\left(1+\frac{x}{y}\right)\cdot\left(1+\frac{y}{z}\right)\cdot\left(1+\frac{z}{x}\right)\)
Cho x,y,z khác 0 và x-y-z=0 .
Tính B = \(\left(1-\frac{z}{x}\right)\cdot\left(1-\frac{x}{y}\right)\cdot\left(1+\frac{y}{z}\right)\)
chi 3 số x,y,z thỏa mãn : \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}\)
C/M: \(4\left(x-y\right)\left(y-z\right)=\left(z-x\right)^2\)
Cho 3 số x,y,z thỏa mãn :
\(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}\)
Tính giá trị của biểu thức :
\(T=\frac{\left(x-z\right)}{\left(x-y\right)^2.\left(y-z\right)}\)