Với x, y, z là các số thực dương hãy tìm giá trị lớn nhất của biểu thức M=xyz/(x+y)(y+z)(z+x)
Cho x,y,z là các số thực dương. Tìm giá trị lớn nhất của:
\(M=\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Cho x, y, z là các số thực dương thỏa mãn xyz = 1.
Tìm giá trị lớn nhất của biểu thức \(Â=x\sqrt{yz}+y\sqrt{zx}+z\sqrt{xy}\)
cho x,y,z là các số dương thay đổi và thỏa mãn xyz=1
tìm giá trị lớn nhất của P=\(\frac{\sqrt{x}}{1+x+xy}+\frac{\sqrt{y}}{1+y+yz}+\frac{\sqrt{z}}{1+z+xz}\)
Cho các số thực dương x,y,z. Tìm giá trị nhỏ nhất của biểu thức P= (xy+yz+zx) / (x²+y²+z²) + (x+y+z)³ / xyz
Cho x, y, z là các số thực dương sao cho x+y+z=3. Tìm giá trị nhỏ nhất của P=x2+y2+z2+xyz
Cho x, y, z là các số thực dương thỏa mãn: xyz = 1. Tìm giá trị nhỏ nhất của
biểu thức A =\(\dfrac{1}{x+y+z}-\dfrac{2}{xy+yz+zx}\)
cho các số dương x, y, z sao cho xyz =1
Tìm giá trị lớn nhất của: \(Q=\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\)
cho x;y;z là các số thực dương thõa mãn : x + y + z = xyz
Tìm giá trị lớn nhất của biểu thức P = \(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\)