Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
Cho hai số x , y thỏa mãn đẳng thức\(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4.\)Xác định x , y để tích xy đạt giá trị nhỏ nhất .
Bài 1:Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=x^2+y^2/x^2+xy+4y^2 với x2+xy+4y^2 khác 0.Bài 2:Với x;y thỏa mãn điều kiện x^2+y^2=1.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=2(xy+y^2)/1+2x^2+2xy.Giúp mik nhé mai mik đi hc r
1.Tìm các số nguyên x và y thỏa manc 6xy+4x-9y-7=0
2.Tìm giá trị nhỏ nhất của biểu thức A=x3+y3+xy,trong đó x,y là các số dương thỏa mãn điều kiện x+y=1
Cho hai số thực x và y thỏa mãn x, y > 0 và xy = 1.
Tìm giá trị nhỏ nhất của biểu thức A = \(\dfrac{1}{(1+x)^2} + \dfrac{1}{(1+y)^2}\)
tìm giá trị của x,y,z thõa mãn các điều kiện:x+y+z=6 và x^2+y^2+z^2=12
B1 cho các số nguyên a,b,c,d thỏa mãn đồng thời 2 điều kiện sau a+b+c=d+1 và a^2+b^2+c^2=d^2+2d-1 chứng minh rằng (a^2+1)(b^2+1)(c^2+1) là số chính phương
B2 cho biểu thức A=\(\frac{x^2}{y^2+xy}\)-\(\frac{y^2}{x^2-xy}\)-\(\frac{x^2+y^2}{xy}\)(xy\(\ne\)0,y\(\ne\)+-x)
A) rút gọn A
b)tính giá trị của A^2 biết x,y thỏa mãn điều kiện x^2+y^2=3xy
c) chứng minh rằng biểu thức A không nhân giá trị nguyên với mọi giá trị nguyên của x,y thỏa mãn điều kiện ở trên
B3 tìm các cặp số (x;y) thỏa mãn điều kiện 4x^2+2y^2-4xy-16x-2y+41=0
cho A = xy^2+ y^2(y^2 -x) +1 /x^2.y^4+2y^2+x^2 +2. Tìm giá trị của biến để A đạt giá trị nhỏ nhất
cho 2 số x,y thỏa mãn điều kiện:(x^2-y^2+1)^2+4x^2y^2-x^2-y^2=0.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức x^2+y^2