CMR : x+3y chia hết cho13 khi và chỉ khi 3x-4y chia hết cho 13
Bài 1: CMR: Tồn tại x,y \(\in\) N
a) x + 4y chia hết cho 13 khi và chỉ khi 10x + y chia hết cho 13
b) 2x + 3y chia hết cho 17 khi và chỉ khi 9x + 5y chia hết cho 17
x+13y chia hết cho 13 khi và chỉ khi 3x -4y chia hết cho 13
a) Chứng minh rằng : Nếu 3x + 5y chia hết cho 7 thì x + 4y chia hết cho 7 (x, y ∈N).
Điều ngược lại có đúng không?
b) Chứng minh rằng : Nếu 2x + 3y chia hết cho 17 thì 9x + 5y chia hết cho 17 (x, y thuoc N). Điều ngược lại có đúng không ?
Chứng tỏ rằng (4x + y) chia hết cho 13 khi và chỉ khi (x + 10y) chia hết cho 13 với mọi x,y là số tự nhiên.
Chứng tỏ rằng (4x +y) chia hết cho 13 khi và chỉ khi (x +10y) chia hết cho 13 với mọi x,y là số tự nhiên.
Chứng minh rằng nếu x, y thuộc n thì: 3x+5y chia hết cho 19 khi và chỉ khi 8y+x chia hết cho 19
cho x,y là các số tự nhiên chứng minh rằng 3x+y chia hết cho 7 khi và chỉ khi 2x+3y chia hết cho 7
cmr với x,y thuộc N : 3X + 5Y CHIA HẾT CHO 7 KHI VÀ CHỈ KHI X+4Y CHIA HẾT CHO 7