Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Trung Hiếu

Cho x, y thay đổi thỏa mãn x+y=1
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức:
\(B=\left(4x^2+3y\right)\left(4y^2+3x\right)+25xy\)

Hoàng Lê Bảo Ngọc
8 tháng 12 2016 lúc 17:13
\(B=\left(4x^2+3y\right)\left(4y^2+3x\right)+25xy=16x^2y^2+12\left(x^3+y^3\right)+34xy\)

\(=16x^2y^2+12\left(x+y\right)\left(x^2-xy+y^2\right)+34xy\)

\(=16x^2y^2+12\left[\left(x+y\right)^2-2xy\right]+22xy\)

\(=16x^2y^2-2xy+12\)

Đặt \(t=xy\) thì \(B=16t^2-2t+12=16\left(t-\frac{1}{16}\right)^2+\frac{191}{16}\ge\frac{191}{16}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y=1\\xy=\frac{1}{16}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2+\sqrt{3}}{4}\\y=\frac{2-\sqrt{3}}{4}\end{cases}}\) hoặc \(\hept{\begin{cases}x=\frac{2-\sqrt{3}}{4}\\y=\frac{2+\sqrt{3}}{4}\end{cases}}\)

Vậy min B \(=\frac{191}{16}\) khi \(\left(x;y\right)=\left(\frac{2+\sqrt{3}}{4};\frac{2-\sqrt{3}}{4}\right);\left(\frac{2-\sqrt{3}}{4};\frac{2+\sqrt{3}}{4}\right)\)

Như trên ta có : \(B=16\left(xy-\frac{1}{16}\right)^2+\frac{191}{16}\)

Mặt khác, áp dụng BĐT Cauchy , ta có : \(1=x+y\ge2\sqrt{xy}\Rightarrow xy\le\frac{1}{4}\)

Suy ra : \(B\le16\left(\frac{1}{4}-\frac{1}{16}\right)^2+\frac{191}{16}=\frac{25}{2}\)

Đẳng thức xảy ra khi x = y = 1/2

Vậy max B = 25/2 khi (x;y) = (1/2;1/2)


Các câu hỏi tương tự
Anh Phương
Xem chi tiết
Hoàng Lê Bảo Ngọc
Xem chi tiết
Qasalt
Xem chi tiết
Nguyễn Vân Hương
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
công hạ vy
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
I lay my love on you
Xem chi tiết
๖ۣۜLuyri Vũ๖ۣۜ
Xem chi tiết