Cho x,y là hai số thực dương và m,n là 2 số thực tùy ý. Đẳng thức nào sau đây là sai?
A. x m . x n = x m + n
B. x m n = x m . n
C. x . y n = x n . y n
D. x m n = x m n
Cho đồ thị y=f’(x) trên [m;n] (như hình vẽ). Biết f(a)> f(c)>0; f(d)<f(b)<0 và
m
a
x
f
(
x
)
[
m
;
n
]
=
f
(
n
)
;
m
i
n
f
(
x
)
[
m
;
n
]
=
f
(
m
)
Số điểm cực trị của hàm số
y
=
f
(
x
)
trên [m;n] là
A. 6
B. 8
C. 9
D. 10
Cho a, b là hai số thực dương và m, n là hai số thực tùy ý. Khẳng định nào sau đây sai?
A. a m b m = a b m
B. a m . a n = a m . n
C. a m n = a m . n
D. 1 b − n = b n
Cho hàm số y = x + 1 x - 1 M và N là hai điểm thuộc đồ thị hàm số sao cho tiếp tuyến của đồ thị hàm số tại M và N song song với nhau. Khẳng định nào sau đây là SAI?
A. Hai điểm M và N đối xứng nhau qua gốc tọa độ
B. Đường tiệm cận ngang của đồ thị hàm số đi qua trung điểm của đoạn thẳng MN
C. Hai điểm M và N đối xứng nhau qua giao điểm của hai đường tiệm cận
D. Đường tiệm cận đứng của đồ thị hàm số đi qua trung điểm của đoạn thẳng MN
Cho hàm số y = ln 2 x - a - 2 m ln 2 x - a + 2 (m là tham số thực), trong đó x, a là các số thực thỏa mãn đẳng thức
log 2 x 2 + a 2 + log 2 x 2 + a 2 + log 2 x 2 + a 2 + . . . + log . . . 2 ⏝ n c ă n x 2 + a 2 - 2 n + 1 - 1 log 2 x a + 1 = 0 (với n là số nguyên dương). Gọi S là tập hợp các giá trị của m thỏa mãn M a x 1 ; e 2 y = 1 . Số phần tử của S là:/
A. 0
B. 1
C. 2
D. Vô số
Gọi m, n, p lần lượt là số tiềm cận của đồ thị các hàm số
y = 6 - 2 x 3 x + 8 ; y = 4 x 2 + 3 x - 1 3 x 2 + 1 ; y = 11 4 x 2 + x - 2
Bất đẳng thức nào sau đây đúng?
A. m > n > p
B. m > p > n
C. p > m > n
D. n > p > m
Với giá trị thực nào của tham số m thì đường thẳng y = 2x + m cắt đồ thị hàm số y = x + 3 x + 1 tại hai điểm phân biệt M, N sao cho MN ngắn nhất?
A. m = -3
B. m = 3
C. m = -1
D. m = 1
Biết rằng đồ thị hàm số y = ( n - 3 ) x + n - 2017 x + m + 3 (m, n là tham số) nhận trục hoành làm tiệm cận ngang và nhận trục tung làm tiệm cận đứng. Tổng m+n bằng
A. 0
B. -3
C. 3
D. 6
Cho hàm số y = x - x + 1 có đồ thị, đường thẳng (d):y=mx-m-1 và điểm A(-1;0) Biết đường thẳng d cắt đồ thị tại hai điểm phân biệt M, N mà A M 2 + A N 2 đạt giá trị nhỏ nhất. Mệnh đề nào dưới đây đúng?
A. m ϵ [-1;0).
B. m ϵ [-∞;-2).
C. m ϵ [-2;-1).
D. m ϵ [-0;+∞).