Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho x; y là các số thực dương thỏa mãn  xy = 4; x ≥ 1 2 ; y ≥ 1 . Tìm giá trị lớn nhất của biểu thức

P = log 1 2 x 3 + log 1 2 y - 1 3

A.  - 27 4

B. 0

C.  - 4 27

D. -9

Cao Minh Tâm
14 tháng 3 2019 lúc 14:56

Thay y = 4 x  vào biểu thức P và biến đổi ta thu được

P = - 9 log 2 2 + 27 log 2 x - 27 .

Do y ≥ 1  nên x ≤ 4 . Suy ra 1 2 ≤ x ≤ 4 . Đặt t = log 2 x , khi đó - 1 ≤ t ≤ 2 .

Xét hàm số f(t0 = - 9 t 2 + 27t - 27;  t ∈ - 1 ; 2

Ta có f ' (t) = -18t + 27; f ' (t) = 0  ⇔ t = 3 2

f (-1) = -63; f (2) = -9;  f 3 2 = 27 4

Vậy

m a x   P   = - 27 4 ⇔ x = 2 2 ; y = 2

Đáp án A


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết