Cho x, y, z là các số thực không âm thỏa mãn x+y+z =1
tìm GTLN của biểu thức:
P = \(\sqrt{2x^2+x+1}+\sqrt{2y^2+y+1}+\sqrt{2z^2+z+1}\)
Giả sử x và y là những số không âm thay đổi thỏa mãn điều kiện x2+y2=1
a, chứng minh rằng \(1\le x+y\le\sqrt{2}\)
b, Tìm GTLN và GTNN của \(P = {\sqrt{1+2x}+\sqrt{1+2y}}\)
cho a,b,c là các số âm không thỏa mãn a2+b2+c2=1
Tìm GTNN và GTLN của biểu thức P=a+b+c
Cho \(a^2+b^2=2\)với a,b là các số không âm. Tìm GTLN và GTNN của \(P=\sqrt{a+1}+\sqrt{b+1}\)
Cho a, b là các số thực không âm thỏa mãn: \(\sqrt{a}+\sqrt{b}=1.\)
TÌm GTLN và GTNN của biểu thức \(F=\sqrt{a+8}+\sqrt{b+8}\)
Cho các số thực không âm a, b, c thay đổi thỏa mãn \(a^2+b^2+c^2=1\). Tìm GTLN và GTNN của biểu thức \(Q=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
Cho x,y,z là các số thực không âm thỏa mãn x + y + z = 1. Tìm giá trị lớn nhất của biểu thức.
\(P=\sqrt{2x^2+x+1}+\sqrt{2y^2+y+1}+\sqrt{2z^2+z+1}\)
CHo x, y không âm thỏa mãn: x2 + y2 =1.
TÌm GTNN của: P= \(\sqrt{1+2x}\)+ \(\sqrt{1+2y}\)
Cho a,b,c là các số thực không âm thỏa \(a^2+b^2+c^2=1\). Tìm GTLN và GTNN của \(P=\sqrt{a+b^2}+\sqrt{b+c^2}+\sqrt{c+a^2}\)