cho 2 số thực x y thỏa mãn x≥3 y≥ 3 tìm gtnn của biểu thức
T=\(21\left(x+\frac{1}{y}\right)+3\left(y+\frac{1}{x}\right)\)
Cho hai số thực x,y thỏa mãn:
\(\left\{{}\begin{matrix}\sqrt[3]{x^3-7}+y^2-2y+3=0\\x^2+x^2y^2-2y=0\end{matrix}\right.\)
Tính giá trị của biểu thức: \(Q=x^{2008}+y^{2008}\)
cho x,y ,z dương thỏa mãn x +y +z = 6. tìm GTLN và GTNN của A = \(x^2+y^2+z^2\)
a) Chứng minh với mọi số thực a,b,c a có \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}\)
b) Cho 3 số dương x,y,z thỏa mãn điều kiện x+y+z=3/4. Chứng minh:
\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+zx\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\ge9\)
Đẳng thức xảy ra khi nào?
Cho 2 số thực x, y thỏa mãn hệ điều kiện \(\left\{{}\begin{matrix}x^3+2y^2-4y+3=0\\x^2+x^2y^2-2y=0\end{matrix}\right.\)
Tính giá trị biểu thức P=\(x^{2020}+y^{2020}\)
\(\left\{{}\begin{matrix}x^3-y^3+\left(x-1\right)y^2-\left(y+1\right)x^x=0\\x^2+4\sqrt{y+4}=2x+y+7\end{matrix}\right.\)
biết cặp số (x,y) là nghiệm của hệ pt \(\left\{{}\begin{matrix}x+y=m\\x^2+y^2=-m^2+6\end{matrix}\right.\)
hãy tìm giá trị của tham số m để biểu thức P=xy+2(x+y) đạt GTNN
Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}\dfrac{3x+2}{x-1}-\dfrac{3y-1}{y+2}=0\\\dfrac{2}{x-1}+\dfrac{3}{y+2}=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{4x-5}{x+1}+\dfrac{2y-3}{y-5}=8\\\dfrac{3}{x+1}-\dfrac{2}{y-5}=-1\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{x+y-2}{x+1}+\dfrac{3-x}{y+1}=\dfrac{5}{4}\\\dfrac{3\left(x+y-2\right)}{x+1}-\dfrac{5-x+2y}{y+1}=\dfrac{3}{4}\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{x-y+1}{x-3}+\dfrac{x+1}{y-3}=\dfrac{-7}{2}\\\dfrac{2\left(x-y+1\right)}{x-3}-\dfrac{x+y-2}{y-3}=-\dfrac{9}{2}\end{matrix}\right.\)
e)\(\left\{{}\begin{matrix}x^2-y^2+2y=1\\\left(x+y\right)^2-2x-2y=0\end{matrix}\right.\)
f)\(\left\{{}\begin{matrix}4x^2+y^2-4xy=4\\x^2+y^2-2\left(xy+8\right)=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+my=3\\x+2y=1\end{matrix}\right.\)
Tìm các giá trị của m để hệ có nghiệm (x;y) thỏa mãn x<0; y>0
Tìm các giá trị của m để hệ có nghiệm (x;y) thỏa mãn x-2y=3