Giúp mk đi ak
1. A,b là số dương. CM a/b+b/a »2
2 .cho x›0 y>0 .Tìm gtnn của S= (x+y)²(1/x²+y² + 1/xy )
1. cho A=x^2(x+4) tìm gtnn của a KHI x>=2
2. Cho x>=4 X+y>=6
img gtnn của B=x^2 +y^2
3. a,b>0 a+b=1 max c=ab (a^2+b^2)
1.cho a>b>0 và ab=1. tìm GTNN của: (a^2+b^2)/(a-b)
2.cho x,y,z thuộc số thực dương thỏa mãn+y<=z. Chứng minh:(x^2+y^2+z^2)(1/x^2+1/y^2+1/z^2)>=27/2
1.Cho a, b, c>0 và a+b+c=1. Tìm GTLN của P=\(a+\sqrt{ab}+\sqrt[3]{abc}\)
2.Cho x, y>0 thỏa mãn:\(x^2+y^2=5\) Tìm GTNN của P=\(x^3+y^3\)
3. Cho x, y, z\(\ge\)0 và x+y+z=3. Tìm GTNN của P=\(x^4+2y^4+3z^4\)
Tìm GTNN của A=x+y biết x,y là các số dương thỏa mãn \(\frac{a}{x}+\frac{b}{y}=1\)(a và b là các hằng số dương)
a, Cho x,y,z >0 thỏa điều kiện x+y+z=3. Tìm GTNN của A=\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\)
b, cho x >1 , y>1. Tìm GTNN của A=\(\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
1/cho số a,b,c thõa mãn diều kiện abc =2006
tính P=\(\frac{2006a}{ab+2006a+2006}-\frac{b}{bc+b+2006}+\frac{c}{ac+c-1}\)
2/ cho x,y là 2 số duongr thõa mãn x+y<1
tìm GTNN của A=\(\frac{1}{x^2+y^2}+\frac{2}{xy}\)
3/chứng minh rằng nếu a,b,c là chiều dài 3 cạnh của 1 tam giác thì
ab+bc>=\(a^2+b^2+c^2\)<2(ab+bc+ca)
4/tìm x,y,z biết
\(\frac{x}{y+2+1}-\frac{y}{x+2+2}-\frac{z}{x+y-3}=x+y+z\)
5/tìm GTNN của biểu thức
\(\sqrt{x-2}+\sqrt{y-4}\)biết x+y=8
Luyện tập tiếp nhé?
a) Cho \(x,y,z>0\)thỏa mãn \(x+y+z=2\). Tìm GTLN của \(P=\sqrt{2x+yz}+\sqrt{2y+zx}+\sqrt{2z+xy}\)
b) Cho \(x,y,z>0\)thỏa mãn \(x+y+z=2\). Tìm GTNN của \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
c) Cho 3 số dương a,b,c thỏa mãn \(a+b+c=3\). Tìm GTNN của \(S=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)
B1: Cho x,y > 0 : x+y=1 . Tìm GTNN của P = 1/x^3+y^3 + 1/xy
B2 : Cho a,b,c > 0 : 1/a+1 + 1/b+1 + 1/c+1 = 2 . cmr : 1/a + 1/b + 1/c >= 4. (a+b+c)
Các bạn giải nhanh nha rùi mk tick cho