Đáp án là B.
Pt ⇔ 5.2 x − 8 > 0 5.2 x − 8 2 x + 2 = 2 3 − x ⇔ 2 x > 8 5 5.2 x − 8 = 8 2 x 2 x + 2
⇔ x > log 2 8 5 5.2 2 x − 16.2 x − 16 = 0
⇔ x > log 2 8 5 2 x = 4 2 x = − 4 5 ⇔ x > log 2 8 5 x = 2 ⇒ x = 2.
P = x log 2 4 x = 2 log 2 8 = 8.
Đáp án là B.
Pt ⇔ 5.2 x − 8 > 0 5.2 x − 8 2 x + 2 = 2 3 − x ⇔ 2 x > 8 5 5.2 x − 8 = 8 2 x 2 x + 2
⇔ x > log 2 8 5 5.2 2 x − 16.2 x − 16 = 0
⇔ x > log 2 8 5 2 x = 4 2 x = − 4 5 ⇔ x > log 2 8 5 x = 2 ⇒ x = 2.
P = x log 2 4 x = 2 log 2 8 = 8.
Cho x, y > 0 thỏa mãn log x + 2 y = log x + log y . Khi đó, giá trị nhỏ nhất của biểu thức P = x 2 1 + 2 y + 4 y 2 1 + x
A. 6
B. 31 5
C. 32 5
D. 39 5
Cho x, y >0 thỏa mãn log(x+2y)=logx+logy. Khi đó giá trị nhỏ nhất của biểu thức P = x 2 1 + 2 y + 4 y 2 1 + x là
A. 6.
B. 32/5
C. 31/5
D. 29/5
Cho phương trình 4 - x - a . log 3 x 2 - 2 x + 3 + 2 - x 2 + 2 x . log 1 3 2 x - a + 2 = 0 . Tập tất cả các giá trị của tham số a để phương trình có 4 nghiệm x 1 ; x 2 ; x 3 ; x 4 thỏa mãn là (c;d). Khi đó giá trị biểu thức T = 2 c + 2 d bằng:
A. 5
B. 2
C. 3
D. 4
Cho hai số thực dương x, y thỏa mãn log x + log y ≥ log ( x 3 + 2 y ) Giá trị nhỏ nhất của P = 25x + y là
A. 375/4
B. 45/2
C. 195/2
D. 14 26
Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = a ; b \ x ∘ . Giá trị của a + b - x ∘ bằng:
A. 150.
B. 100.
C. 30.
D. 50.
Giả sử a,b là các số thực sao cho x 3 + y 3 = a 10 3 x + b 10 2 x đúng với mọi các số thực dương x, y, z thỏa mãn log ( x + y ) = z và log ( x 2 + y 2 ) = z + 1 . Giá trị của a+b bằng
A. -31/2
B. -25/2
C. 31/2
D. 29/2
Cho x ϵ (0;π/2). Biết log(sinx)+log(cosx)=-1 và log(sinx+cosx)=1/2(logn-1). Giá trị của n là
A. 11.
B. 12.
C. 10.
D. 15.
Tìm số nghiệm nguyên của bất phương trình log 5 2 3 x - 2 log 2 ( 4 - x ) - log ( 4 - x ) 2 + 1 > 0
A. 3
B. 1
C. 0
D. 2
Cho hàm số y = ln 2 x - a - 2 m ln 2 x - a + 2 (m là tham số thực), trong đó x, a là các số thực thỏa mãn đẳng thức
log 2 x 2 + a 2 + log 2 x 2 + a 2 + log 2 x 2 + a 2 + . . . + log . . . 2 ⏝ n c ă n x 2 + a 2 - 2 n + 1 - 1 log 2 x a + 1 = 0 (với n là số nguyên dương). Gọi S là tập hợp các giá trị của m thỏa mãn M a x 1 ; e 2 y = 1 . Số phần tử của S là:/
A. 0
B. 1
C. 2
D. Vô số