A=x^4+6x^3+7x^3-6x+1=x^4+6(x^3-2x^2)+(9x^2-6x+1)=x^4+2x^2(3x-1)+(3x-1)^2=(x^2+3x-1)^2
A=x^4+6x^3+7x^3-6x+1=x^4+6(x^3-2x^2)+(9x^2-6x+1)=x^4+2x^2(3x-1)+(3x-1)^2=(x^2+3x-1)^2
Phân tích đa thức thành nhân tử:
a) x 4 - 6 x 3 + 12 x 2 - 14x + 3.
b) x 4 + 6 x 3 + 7 x 2 -6x + l.
Cho x là số nguyên. Chứng minh rằng biểu thức M=(x+1)(x+2)(x+3)(x+4)+1 là bình phương của một số nguyên
Cho a là số nguyên. Chứng minh M=(a+1)(a+2)(a+3)(a+4)+1 là bình phương của một số nguyên
Cho a là số nguyên . Chứng minh rằng
M = ( a + 1 )( a + 2 )( a + 3 )( a + 4 ) + 1 là bình phương của một số nguyên
1. Cho a là số nguyên. Chứng minh M = ( a + 1 ) ( a + 2 ) ( a + 3 ) ( a + 4 ) + 1 là bình phương của một số nguyên
2. Phân tích đa thức thức thành nhân tử :
( x^2 + x + 1 ) ( x^2 + x + 2 ) - 12
Chứng minh rằng tổng các bình phương của ba số nguyên liên tiếp không phải là bình phương của một số nguyên.
Bài 1. Cho x, y là hai số nguyên dương thỏa mãn x2 + 2y là một số chính phương. Chứng minh rằng x2 + y là tổng của hai số chính phương
Bài 2. Cho a, b là hai số nguyên. Chứng minh rằng 2a2+2b2 là tổng của hai số chính phương
Cho X thuộc số nguyên dương, với X là tập hợp các số bằng tổng bình phương của 2 số nguyên dương (ví dụ 5 = 1^2 + 2^2). Cho a,b thuộc X chứng minh a*b thuộc X
cho 3 số x,y,z nguyên dương thỏa mãn xy+yz+xz=0 chứng minh A=(x2+1)(y2+1)(z2+1) là bình phương của 1 số nguyên