Áp dụng BĐT cosi:
`x+9/x>=6`
`=>x+1/x`
`=x+9/x-8/x>=6-8/x`
Vì `x>=3=>8/x<=8/3`
`=>6-8/x>=6-8/3=10/3`
Dấu "=" `<=>x=3`
Áp dụng BĐT cosi:
`x+9/x>=6`
`=>x+1/x`
`=x+9/x-8/x>=6-8/x`
Vì `x>=3=>8/x<=8/3`
`=>6-8/x>=6-8/3=10/3`
Dấu "=" `<=>x=3`
Cho các số thực dương x,y thỏa mãn xy = 4 .Chứng minh x + y \(\ge\)4 và \(\frac{1}{x+3}+\frac{1}{y+3}\)\(\le\frac{2}{5}\)
ai biết giúp mình với mai ktra rồi .Chứng minh với mọi x, y:\(x^4+y^4\ge x^3y+xy^3\)
cho x,y > 0. Chứng minh : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
cho x2+y2=1.Chứng minh: \(\left(x+y\right)^2\le2\)
Cho x+y+z = 10
Chứng minh \(x^2+y^2+z^2\ge\frac{100}{3}\)
cho x, y thoả mãn x+y =1. chứng minh \(x^3+y^3+xy\ge\frac{1}{2}\)
Chứng minh \(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\) với x + y + z = 3
Cho x, y là các số thực dương. Chứng minh rằng: \(\frac{\left(x+y+1\right)^2}{xy+y+x}\)+\(\frac{xy+x+y}{\left(x+y+1\right)^2}\)\(\ge\)\(\frac{10}{3}\)
Cho các số thực dương x,y,z thỏa mãn x+y+z=3. Chứng minh rằng: \(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\)
Cho x, y, z là các số lớn hơn hoặc bằng 1. Chứng minh rằng:
a)\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
b)\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{3}{1+xyz}\)
Chứng minh:
\(x^2-x+1\ge\frac{3}{4}\)