Cho x>0 , y>0 và 2x+3y \(\le\)2
Tìm GTNN của biểu thức \(P=\frac{4}{4x^2+9y^2}+\frac{9}{xy}\)
Cho x.0, y>0 và \(2x+3y< =2\)
Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{4}{4x^2+9y^2}+\frac{9}{xy}\)
x>0 ; y>0 và \(2x+3y\le2\)
Tìm MIN A= \(\frac{4}{4x^2+9y^2}+\frac{9}{xy}\)
Cho \(x>0,y>0\)và\(2x+3x\le2\). Tìm Min \(A=\frac{4}{4x^2+9y^2}+\frac{9}{xy}\)
\(\frac{3}{x}+\frac{2}{y}+\frac{6}{2x+3y}\left(x>0;y>0;xy=6\right) Tìm-GTNN\)
a) Cho \(x>0\)\(y>0\)\(x+y=1\)Tìm GTNN của biểu thức \(A=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)
b)Cho \(x>0\)\(y>0\)\(2x+3y\le2\)Tìm GTLN \(B=\frac{4}{4x^2+9y^2}+\frac{9}{xy}\)
\(\hept{\begin{cases}x+y+\frac{3y-2x}{xy}=5\\x^2+y^2+\frac{4x^2+9y^2}{x^2y^2}=15\end{cases}}\)
Giải hpt trên
1, Cho \(x,y\ge0\) thỏa mãn \(2x+3y=1\) Tìm GTLN, GTNN của \(A=x^2+3y^2\)
2, Cho \(x^2+y^2=52\) Tìm GTLN, GTNN của \(A=2x+3y+4\)
3, Cho \(x,y>0\)và \(x+y=1\) Tìm GTNN của \(A=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
Cho các số x, y, z > 0 thỏa mãn x + y + z = 1. Tìm GTLN của biểu thức:
\(A=\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}+2017\left(xy+yz+zx\right)\)