a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: Xét ΔDAM vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADM=góc EDC
=>ΔDAM=ΔDEC
c: Xét ΔBMC có BA/AM=BE/EC
nên AE//MC
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: Xét ΔDAM vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADM=góc EDC
=>ΔDAM=ΔDEC
c: Xét ΔBMC có BA/AM=BE/EC
nên AE//MC
Cho tam giác ABC vuông tại A (AB < AC), tia phân giác của góc cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a) Chứng minh DABD = DEBD.
b) Gọi M là giao điểm của AB và DE. Chứng minh DM = DC.
c) Chứng minh rằng AD + EC > DM
Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc với BC (E thuộc BC).
a) Chứng minh rằng AD = ED.
b) Gọi F là giao điểm của AB và DE. Chứng minh AF = EC.
c) Chứng minh AE // FC.
Cho △ ABC vuông tại A ,tia phân giác của góc B cắt AC tại D kẻ DE vuông góc BC (E ∈ BC). Chứng minh △ BAD = △ BED
Cho △ ABC vuông tại A ,tia phân giác của góc B cắt AC tại D kẻ DE vuông góc BC (E ∈BC)
a) Chứng minh △BAD=△BED
b) Chứng minh BD là đường trung trực của đoạn thẳng AE
c) Gọi F là giao điểm của hai đường thẳng AB và DE . Chứng minh AE // FC
Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DE vuông góc với BC tại E.
a) Chứng minh tam giác ABD bằng tam giác EBD .
b) Gọi F là giao điểm của AB và DE. Chứng minh BF = BC.
c) Kẻ đường cao AH của AFC . Chứng minh AE vuông góc với AH
Cho ΔABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D, E là điểm trên cạnh BC ▶BE=BA. a/Chứng minh ΔABD=ΔEBD. b/Chứng minh DE vuông góc BC. c/Gọi F là giao điểm của DE và AB. Chứng minh DC=DF. d/Chứng minh AE//FC
Hộ mik với ạ mik cần gấp cảm ơn ạ
Bài 1: Cho ∆MNP có MN =8cm, MP = 15cm, NP = 17cm.
a) Chứng minh ∆MNP vuông
b) Kẻ tia phân giác NI của góc MNP (I MP). Từ I kẻ IK vuông góc với NP.
Chứng minh ∆MNI = ∆KI
c) Tia IK cắt tia NM tại Q. Chứng minh KP = MQ
d) Từ M kẻ tia Mx//IK cắt NI ở H. Chứng minh ∆MIH cân
Bài 2: Cho ∆ABC cân tại A có AB = AC = 5cm, BC= 6cm. Kẻ AD vuông góc với
BC tại D. Kẻ DE vuông góc với AB tại E, DF vuông góc với AC tại F.
a) Chứng minh ∆ADB = ∆ADC
b) Tính độ dài AC
c) Giả sử ̂ = 740
. Tính góc ABC
d) Chững minh DE = DF
e) Chứng minh AE = AF
f) Chứng minh DE //BC
Bài 3: Cho ∆MNP có MN = MP = 13cm, NP = 10cm. Kẻ MD vuông góc với NP
tại D.
a) Chứng minh: ND = PD và ̂ ̂
b) Tính độ dài MD
c) Kẻ DA vuông góc MN tại I và IA = ID; kẻ DB vuông góc MP tại H và DH =
BH. Chứng minh rằng AM = MD
d) Chứng minh ∆MAB cân
e) Chứng minh AN vuông góc AM
f) Gọi giao điểm của AB và MN là E, giao điểm của AB và MP là F. Chứng
minh DM là tia phân giác của góc EDF
Bài 4: Cho ∆ABC vuông tại A có AB = 3cm, AC = 4cm.
a) Tính độ dài BC
b) Trên tia đối của tia AC lấy điểm D sao cho AD = AB. ∆ABD có dạng đặc
biệt gì? Vì sao?
c) Lấy trên tia đối của tia AB điểm E sao cho AE = AC .chứng minh DE = BC
Bài 5: cho ∆ABC cân tại A, có góc C= 300
. Vẽ phân giác AD ( D BC). Vẽ DE
vuông góc với AB, DF vuông góc AC.
a) Chứng minh ∆DEF đều
b) Chứng minh ∆BED = ∆CFD
c) Kẻ BM//AD ( M AC) chứng minh ∆ABM đều
cho tam giác ABC vuông tại A, tia phân giác góc B cắt AC tại M vuông góc với BC tại D
a) chứng minh góc BMA = góc BMD
b) gọi E là giao điểm của hai đường thẳng MD và BA. Chứng minh AC= DE
c)chứng minh tam giác AME = tam giác DMC
d) kẻ DH vuông góc với MC tại H và AK vuông góc với ME tại K. Hai tia DH và AK cắt nhau tại N. Chứng minh MN là tia phân giác của góc KMH
Cho tam giác ABC vuông tại A có AB = AC Gọi I là trung điểm của BC D là trung điểm của AC a chứng minh tam giác amb bằng tam giác ABC và AE vuông góc với BC b từ A kẻ đường thẳng vuông góc với BD cắt BC tại D trên tia đối của tia de lấy điểm F sao cho de = AB Chứng minh rằng tam giác ADM bằng C D E Từ đó suy ra AE = AB song song với CD e từ C kẻ đường thẳng vuông góc với AC cắt tại g Chứng minh tam giác ABD bằng tam giác ABC Chứng minh rằng AB = ACG