Kẻ \(AH\perp CE\left(H\in CE\right)\).
Gọi AH giao BD tại K. Do CE // BD nên \(AK\perp BD\).
\(S_{\Delta ACE}=\dfrac{1}{2}AH.CE=\dfrac{1}{2}\left(AK+HK\right).CE\)
\(=\dfrac{1}{2}AK.CE+\dfrac{1}{2}HK.CE\)
\(=\dfrac{1}{2}AK.BD+\dfrac{1}{2}HK.BD\)
\(=S_{\Delta ABD}+S_{\Delta BDC}=S_{ABCD}\) (Đpcm).