Cho (0 ; R) đường kính AB. Vẽ dây cung CD =R, AC và BD kéo dài cắt nhau tại e A) tính số đo cung CD nhỏ và số đo góc AEB B) GỌI H LÀ GIAO ĐIỂM CỦA AD VÀ BC, CM TỨ GIÁC ACHD NỘI TIẾP C) CHỨNG MINH A H + AD + BC + BC = 4 R
Cho ( O;R ) có dây BC cố định , gọi d là đường thằng qua O và vuông góc với BC ; tiếp tuyến B tại ( O ) cắt đường thẳng d tại A . Gọi M là điểm bất kì thuộc cung nhỏ BC ; từ M kẻ MD , ME , MF theo thứ tự vuông góc với AB , BC , CA tại D , E , F
a . Chứng minh AC là tiếp tuyến ( O;R ) và MDBE , MECF là các tứ giác nội tiếp
b . Cho BC = R\(\sqrt{3}\). Tính diện tích hình viên phân tạo thành bởi cung nhỏ BC và dây BC
c . Chứng minh ME2 = MD.MF
d . Gọi P là giao điểm của MB và DE , Q là giao điểm của MC và EF . Đường tròn ngoại tiếp tam giác MDP cắt đường tròn ngoại tiếp tam giác MFQ tại điểm thứ hai là N . Chứng minh rằng đường thẳng MN đi qua trung điểm BC
Cho tam giác ABC vuông tại A nội tiếp đường tròn (O, R) có BC là đường kính và AC=R. Kẻ dây AD vuông góc với BC tại H.
1) Tính độ dài các cạnh AB, AH theo R;
2) Chứng minh rằng HA.HD=HB.HC;
3) Gọi M là giao điểm của AC và BD. Qua M kẻ đường thẳng vuông góc với BC cắt BC ở I, cắt AB ở N. Chứng minh ba điểm N, C, D thẳng hàng;
4) Chứng minh AI là tiếp tuyến của đường tròn (O, R).
Cho đường tròn (O; R) và A thuộc (O). Vẽ liên tiếp các cung AB, BC, CD sao cho AB= R; BC = \(R\sqrt{2}\); CD= \(R\sqrt{3}\)
a) Tính số đo các cung nhỏ : AB, BC, CD, DA
b) Các tiếp tuyến tại C và D cắt nhau ở M. Tính OM và diện tích tam giác MCD theo R
c) Chứng tỏ rằng tứ giác ABCD là hình thang cân và tính diện tích theo R
d) I, H là các điểm thuộc cung AD sao cho AH= DI và hai dây AH, DI cắt nhau ở N. Chứng minh ON vuông góc AD
Cho đường tròn (O;R) có AB là một dây cố định (AB < 2R) . Trên cung lớn AB lấy 2 điếm C ; D sao cho AD // BC
a) Kẻ các tiếp tuyến với đường tròn (O;R) tại A ; D , chúng cắt nhau tai I . Chứng minh AODI là tứ giác nội tiếp .
b) Gọi M là giao điểm của AC và BD . Chứng minh rằng điểm M thuộc đường tròn cố định khi C ; D di chuyển trên cung lớnn AB sao cho AD //BC
c) Cho biết AB = R và BC = R . Tính điện tích tứ giác ABCD theo R
Cho đường tròn (O;R) đường kính AB. Trên tiếp tuyến tại A của (O;R) lấy điểm C sao cho AC = 2R. Gọi D là giao điểm của BC và đường tròn (O)
a) CM: AD là đường cao và cũng là đường trung tuyến của ΔABC
b) Vẽ dây cung AE vuông góc với OC tại H. CM:CE là tiếp tuyến của đường tròn (O;R)
c) Đường thẳng BE cắt đường thẳng OD tại F. Tính tanOBF và suy ra số độ của góc OFB
d) Gọi K là hình chiếu của điểm E xuống AB, M là giao điểm của EK với BC. Tính độ dài các đoạn thẳng ME và MK theo R
Cho đường tròn tâm O, bán kính R với dây cung BC cố định. Điểm A thuộc cũng lớn BC. ĐƯờng phân giác của \(\widehat{BAC}\)cắt (O) tại D. Các tiếp tuyến của (O;R) tại C và D cắt nhau tại E. Tia CD cắt AB ở K , đường thẳng AD cắt CE ở I
a) Chứng minh BC // DE
b) Chứng minh AKIC là tứ giác nội tiếp
c)Cho BC= R\(\sqrt{3}\)tính theo R độ dài cung nhỏ BC của (O;R)
Mọi người giúp em với ạ :(((
Cho hai đường tròn (O;R) và (O',r) tiếp xúc ngoài tại C(R>r).Gọi AC và BC là 2 đường kính đi qua C của 2 đường tròn trên.Qua M là trung điểm của AB kẻ dây cung DE vuông góc với AB.Gọi F là giao điểm thứ 2 của đường thẳng DC với (O')
a)tứ giác AEBD là hình gì?
b)B,E,F thẳng hàng
c)C/m:4 điểm M,D,B,E cùng nằm trên một đường tròn
d)DB cắt đường tròn (O') tại G c/m DF,EG,AB đồng quy
e)c/m MF là tiếp tuyến của đường tròn (O')
BT: Cho điểm A nằm ngoài dường tròn ( O;R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O) (B,C là các tiếp điểm). Vẽ đường kính BD của (O), gọi H là giao điểm của OA và BC
a) Cm BC vuông góc BD, OA vuông góc BC
b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D). Cmr: OH.OA= \(R^2\) và DE.DA=4OH.OA
c) Gọi M là giao điểm của BC và AD, N là giao điểm của OA và BE. Cmr: MN song song BD
d) Tiếp tuyến D của đường tròn (O) cắt BC tại F. Gọi K là giao điểm của AD và OF. Giả sử AB= \(\sqrt{5}\) .R . Tính độ dài KE theo R