ΔKFD cân tại K
=>góc BKF=2*góc BDF
CE là phân giác của góc BCF
nên góc BCF=2*góc BCA
mà góc BDA=góc BCA
nên góc BKF=góc BCF
=>BCKF nội tiếp
ΔKFD cân tại K
=>góc BKF=2*góc BDF
CE là phân giác của góc BCF
nên góc BCF=2*góc BCA
mà góc BDA=góc BCA
nên góc BKF=góc BCF
=>BCKF nội tiếp
cho tứ giác ABCd nội tiếp đường tròn đường kính AD. 2 đường chéo AC và DB cắt nhau tại E, EF vuông góc AD. đường thẳng CF cắt đường tròn tại điểm thứ 2 là M. BD giao CF tại N.cm
a, tg CEFD nội tiếp
b, tian Fa là phân giác của góc BFM
c, BE.DN=EN.BD
d,K là trung điểm DE
cm tg CBKF nội tiếp được
Cho tứ giác ABCD nội tiếp đường tròn (O) đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Kẻ EF vuông góc AD tại F. Gọi K là trung điểm DE. Chứng minh:
a) CA là phân giác góc BCF
b) Tứ giác BCKF nội tiếp
c) Đường tròn qua 3 điểm K, F, D cắt (O) tại N. P là giao điểm BC và FK. Chứng minh P, D, N thẳng hàng.
các ban làm tới câu c) chỉ tớ với {câu a, b ko cần trình bày cx đc)
Cho tứ giác ABCD nội tiếp đường tròn (O) đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Kẻ EF vuông góc với AD ( F thuộc AD)
a) CMR : tia CA là tia phân giác góc BCF
b) Gọi M là trung điểm của DE. CMR: CM.BD= DF.DO
Cho (O) đường kính AB và một điểm C trên AB. Trên đường tròn lấy một điểm D và I là điểm chính giữa của cung nhỏ BD, IC cắt đường tròn tại E, DE cắt AI tại K. Chứng minh:
a) Tứ giác AKCE nội tiếp
b) CK \(\perp\)AD.
c) Kẻ Cx // AD cắt DE tại F. Chứng minh tứ giác CBEF nội tiếp.
d) CF = BC.
giúp mk vs!!
1.Từ 1 điểm A nằm ngoài đường tròn tâm O, vẽ 2 tiếp tuyến AB,AC của đường tròn tâm O( B,C là các tiếp điểm), BD là đường kính của đường tròn tâm O, AD cắt đường tròn tâm O tại E.
a)CM: AB2=AD.AE.
b)Gọi H là giao điểm của OA với BC. CMR: HC là phân giác của góc EHD.
2.Cho hình thang ABCD, trên cạnh BC lấy E sao cho BE=BC/3, trên tia đối của tia CD lấy lấy F sao cho CF=BC/2. Gọi M là giao điểm của AE và BF.
CMR: 5 điểm A,B,C,D,M cùng thuộc1 đường tròn.
3.Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn tâm O, AD là đường kính của (O), tiếp tuyến tại D của (O) cắt BC tại M. Đường thẳng MB cắt AB,AC lần lượt tại E và F.
a) CMR: MD^2=MC.MB
b) Gọi H là trung điểm của BC, CMR: MDHO là tứ giác nội tiếp.
Cho tam giác ABC nhọn(AB<AC) nội tiếp đường tròn(O) các đường cao AD,BE,CF cắt tại H. a)CM tứ giác BFEC nội tiếp và góc EDH=góc FDH b) Gọi I là trung điểm của DE và CF cắt đường tròn tại N ,ND cắt (O) tại K.CM: A,I,K thẳng hàng
Cho đường tròn tâm (O) đường kính MC. Qua điểm I tùy ý trên đoạn OM (I khác O, M) vẽ dây DE của (O). Đường thẳng MD cắt đường thắng CE tại B và gọi A là hình chiếu vuông góc của B trên đường thẳng MC. Đường thẳng AD cắt đường tròn (O) tại S (S khác D).
1. Chứng minh tứ giác ABCD là tứ giác nội tiếp và CA vuông góc với SE.
2. Chứng minh các đường thẳng BA, EM, CD cắt nhau tại một điểm.
3. Chứng minh M là tâm đường tròn nội tiếp tam giác ADE.
4. Giả sử A, O đối xứng với nhau qua điểm M và đường thẳng AE cắt (O) tại điểm F.(F nằm giữa A và E). Nối CF cắt ME tại P. Chứng minh MP = OP.
Cho tứ giác ABCD nội tiếp đường tròn (O) sao cho điểm O nằm trong tứ giác ABCD và AB<CD. AC cắt BD tại E.
a) Chứng minh EA.EC=EB.ED
b) Gọi K trung điểm BC. Đường thẳng qua E và vuông góc OE cắt AD và BC lần lượt tại M,N. Chứng minh tứ giác ENKO nội tiếp
c) Chứng minh E trung điểm MN
d) Qua D kẻ đường vuông góc với AD. Đường thẳng này cắt đường thẳng vuông góc BC tại C ở F. Chứng minh E,O,F thẳng hàng
Cho tứ giác ABCD nội tiếp nửa đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Kẻ EF vuông góc với AD. Gọi M là trung điểm của DE. Chứng minh rằng: Tứ giác BCMF nội tiếp được.