cho tứ giác ABCD nội tiếp đường tròn (O). Chứng minh AB.CD+AD.BC=AC.BD
Cho tứ giác ABCD nội tiếp đường tròn (O). Trên đường chéo BD lấy điểm E sao cho ∠ DAE = ∠ BAC . Chứng minh: AD.BC + AB.CD = AC.BD
Cho tứ giác ABCD nội tiếp dường tròn (O). Chứng minh: AC.BD = AB.CD + AD.BC
Cho tứ giác ABCD nội tiếp đường tròn (O).
Chứng minh : AC.BD = AB.CD + AD.BC
Giả sử BCD là tam giác đều có cạnh bằng Chứng tỏ AC = AB + AD và tính diện tích hình quạt tròn OBC .
Cho đường tròn tâm O , đường thẳng d cắt đường tròn tâm O tại A và B . Từ điểm M thuộc d kẻ tiếp tuyến MC và MD của đường tròn a) chứng minh tứ giác MCOD nội tiếp b) chứng minh tam giác MCA đồng dạng tam giác MBC c) chứng minh AC.BD=AD.BC
Cho tứ giác ABD nội tiếp trong vòng tròn (o). CM : AC.BD = AB.CD + AD.BC
cho tứ giác abcd nội tiếp đt (o). cm rằng: AB.CD+BC.AD=AC.BD
Cho tứ giác ABCD nội tiếp đường tròn tâm O đường kính AD hai đường chéo AC và BD cắt nhau tại E kẻ EF vuông góc ad a) Chứng minh tứ giác ECDF nội tiếp Xác định tâm I b) Chứng minh CA là phân giác của góc BCF c) Chứng minh tứ giác bcef nội tiếp
Cho tam giác ABC nhọn nội tiếp đường tròn (O;R), có BC=R\(\sqrt{3}\)và AB<AC. Gọi H là trực tâm tam giác ABC, nối AH cát đường tròn tại điểm D khác A.
1. tính góc BAC. Suy ra tam giác OAH cân
2. chứng minh rằng AB.BC=AB.CD+AC.BD