Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn nam trân

cho tứ giác abcd nội tiếp đt (o). cm rằng: AB.CD+BC.AD=AC.BD

Đúng ý bé
1 tháng 3 2016 lúc 16:31

gợi ý:

lúc đầu nó là 1 bdt vì nó nội tiếp nên dấu = xảy ra!

Tuấn
1 tháng 3 2016 lúc 17:02

bđt ptoleme nhé bạn. 
Trên cung nhỏ BC, ta có các góc nội tiếp ∠BAC = ∠BDC, và trên cung AB, ∠ADB = ∠ACB

Lấy 1 điểm K trên AC sao cho ∠ABK = ∠CBD;Từ ∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD, suy ra ∠CBK = ∠ABD.Do vậy tam giác △ABK đồng dạng với tam giác △DBC, và tương tự có △ABD ∼ △KBC.Suy ra: AK/AB = CD/BD, và CK/BC = DA/BD;Từ đó AK·BD = AB·CD, và CK·BD = BC·DA;Cộng các vế của 2 đẳng thức trên: AK·BD + CK·BD = AB·CD + BC·DA;Hay: (AK+CK)·BD = AB·CD + BC·DA;Mà AK+CK = AC, nên AC·BD = AB·CD + BC·DA; (điều phải chứng minh)
Hồ Quốc Khánh
1 tháng 3 2016 lúc 18:54

A B C D E

Giả sử góc ACD > góc ACB. Lấy E trên BD sao cho góc DCE = góc ACB.

Ta có : 2 tam giác ABC và DEC đồng dạng (DCE = ACB; BAC = BDC (chắn cung BC)) => \(\frac{AB}{DE}=\frac{AC}{CD}\) => AB.CD = AC.DE (1)

Tương tự, ta có 2 tam giác ACD và BCE đồng dạng => AD.BC = BE.AC (2)

Từ (1) và (2) => AB.CD + AD.BC = AC.DE + BE.AC hay AB.CD + BC.AD = AC.BD


Các câu hỏi tương tự
Nguyễn Ngọc Mi
Xem chi tiết
Dương Tân
Xem chi tiết
Bùi THị Mỹ Duyên
Xem chi tiết
Vương Hoàng Minh
Xem chi tiết
Nguyễn Thị Minh Thư
Xem chi tiết
Phan hữu Dũng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nyn Nhy
Xem chi tiết
Bang Bang
Xem chi tiết