1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.
2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.
3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN
4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.
5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3
bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .
1) C/m M, N lần lượt là trung điểm của AD và BC.
2) tứ giác EFQP là hình gì ?
3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm
4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)
bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.
2) AM = MN = NC .
3) 2EN = DM + BC .
4)\(S_{ABC}=3S_{AMB}\)
bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.
1) C/m E ,F ,I thẳng hàng .
2) tính \(S_{ABCD}\)
3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)
bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng
2) tính EF≤ AB+CD / 2
3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2
Bài 1: Cho tứ giác ABCD. Trên AB, CD lần lượt lấy M, N, P, Q sao cho AM= MN= NB, CP= PQ= QD. Chứng minh rằng \(S_{MNPQ}=\frac{1}{3}S_{ABCD}.\)
Bài 2: Cho tam giác ABC. Trên một nửa mặt phẳng bờ BC chứa A, dựng các hình bình hành BCEF, ACKL, ABMN sao cho E, F lần lượt nằm trên KL, MN. Chứng minh rằng \(S_{BCEF}=S_{ACKL}+S_{ABMN}.\)
Bài 3: Cho tứ giác ABCD. P là điểm bất kì nằm trong tứ giác ABCD sao cho \(S_{APB}+S_{CPD}=\frac{1}{2}S_{ABCD}.\)Gọi M,N lần lượt là trung điểm AC, BD. Chứng minh rằng P, M, N thẳng hàng.
Giúp mình với! Mình cần gấp.
Cho hình bình hành ABCD có AB=2AD.Gọi E và F lần lượt là trung điểm của AB và CD. I là giao điểm của AF và DE,K là giao điểm của BF và CE. a)Chứng minh rằng tứ giác AECF là hình bình hành. b)Tứ giác AEFD là hình gì ? Vì sao? c) Chứng minh rằng tứ giác EIFK là hình chữ nhật. d) Tìm điều kiện của hình bình hành ABCD để tứ giác EIFK là hình vuông.
Cho tứ giác ABCD. AB=a, CD=b. Gọi Để và F lần lượt là trung điểm của AD và BC Chứng minh rằng: EF nhỏ hơn hoặc bằng a+b/2
Bài 8: Cho hình bình hành ABCD có AB = 2AD. Gọi E, F lần lượt là trung điểm của AB và CD. Gọi I là giao điểm của BF và DE, K là giao điểm của BF và CE. a/ Chứng minh tứ giác AECF là hình bình hành.
b/ Tứ giác AEFD là hình gì? Vì sao?
c/ Chứng minh tứ giác EIFK là hình chữ nhật.
d/ Tìm điều kiện của hình bình hành ABCD để tứ giác EIFK là hình vuông.
Bài 9: Cho hình bình hành AABC, O là giao điểm hai đường chéo. Lấy E, F sao cho AE = EF = FC.
a/ Chứng minh tứ giác BEDF là hình bình hành.
b/ Gọi M là giao điểm của BC và DF. Chứng minh FM = FD
c/ Gọi I là giao điểm của CD và BF, K là giao điểm của AB và DE. Chứng minh ba điểm K, O, I thẳng hàng.
Cho tứ giác ABCD. Gọi E, I, F lần lượt là trung điểm của AD, BC, AC. Chứng minh rằng \(EF\le\frac{AB+CD}{2}\)
cho tứ giác ABCD. trên cạnh AB và CD ta lần lượt lấy 2 điểm E và F sao cho \(\frac{AE}{BE}=\frac{CF}{DF}\). chứng minh rằng nếu đường chéo AC đi qua trung điểm I của đoạn thẳng EF thì AC chia đôi diện tích của tứ giác ABCD