Xét ΔICD có \(\widehat{CID}+\widehat{ICD}+\widehat{IDC}=180^0\)
=>\(\widehat{ICD}+\widehat{IDC}=180^0-115^0=65^0\)
=>\(\widehat{BCD}+\widehat{CDA}=2\cdot65^0=130^0\)
Xét tứ giác ABCD có \(\widehat{ABC}+\widehat{BCD}+\widehat{CDA}+\widehat{BAD}=360^0\)
=>\(\widehat{ABC}+\widehat{BAD}=360^0-130^0=230^0\)
mà \(\widehat{BAD}-\widehat{ABC}=50^0\)
nên \(\widehat{BAD}=\dfrac{230^0+50^0}{2}=140^0;\widehat{ABC}=140^0-50^0=90^0\)