Xét ΔABD và ΔCBD có
góc ABD=góc CBD
BD chung
góc ADB=góc CDB
=>ΔABD=ΔCBD
=>AB=CB và DA=DC
=>BD là trung trực của AC
Xét ΔABD và ΔCBD có
góc ABD=góc CBD
BD chung
góc ADB=góc CDB
=>ΔABD=ΔCBD
=>AB=CB và DA=DC
=>BD là trung trực của AC
Cho tứ giác ABCD có BC = CD, đường chéo BD là tia phân giác của góc ADC. Chứng minh rằng tứ giác ABCD là hình thang.
Tứ giác ABCD có đường chéo AC và BD vuông góc vói nhau . Gọi M; N; L lần lượt là trung điểm của AB AD và đường chéo AC. Từ M kẻ đường thẳng vuông góc với CD cắt AC tại H. Chứng minh : H là trực tâm của tam giác MNL
Cho tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại I và góc ABD= góc ACD
a, Chứng minh tam giác AIB đồng dạng với tam giác DIC
b,AI.BC=AD.BI
c, Từ D kẻ tia phân giác DM của tam giác ADC. Tính DM biết AC=5cm, AD=3cm và góc ADC=90 độ
Cho tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại I và góc ABD= góc ACD
a, Chứng minh tam giác AIB đồng dạng với tam giác DIC
b,AI.BC=AD.BI
c, Từ D kẻ tia phân giác DM của tam giác ADC. Tính DM biết AC=5cm, AD=3cm và góc ADC=90 độ
Tứ giác ABCD có 2 đường chéo AC và BD vuông góc với nhau.Gọi M,N,L lần lượt là trung điểm AB,AD và đường chéo AC . Từ M kẻ đường thẳng vuông góc với CD cắt AC tại H
Chứng minh rằng:H là trực tâm của tam giác MNL
Giups mình nha các bạn!
Cho tứ giác abcd có AC=BD. Gọi M và N lần lượt là trung điểm của AD, BC. H và G lần lượt là giao điểm của MN với 2 đường chéo AC và BD Chứng minh: góc AHM bằng góc BGN
Bài 1. Cho hình thang ABCD có đáy AB > đáy CD và hai đường chéo AC và BD vuông góc. Trên đáy AB lấy M sao cho AM có độ dài bằng đường trung bình của hình thang ABCD. Chứng minh : CA là đường phân giác góc MCD .
Bài 2: Cho tam giác ABC gọi M là trung điểm của của cạnh AB, kẻ đường phân giác trong BE của góc ABC. Dựng AI vuông góc với BE, cắt BC tại D
a)Tam giác ABD là tam giác gì? c/m
b)C/m: MI // BC
c)Gọi N là giao điểm của MI và AC. C/m: AN = NC
Giúp em với ạ,em cảm ơn ạ
Cho tứ giác ABCD có AD = BC và AB < CD. Trung điểm của các cạnh AB và CD là M và N. Trung điểm của các đường chéo BD và AC là P và Q.
a) chứng minh tứ giác MNPQ là hình thoi
b) hai cạnh DA và CD kéo dài cắt nhau tại G. kẻ tia phân giác Gx của góc AGB. Chứng minh Gx //MN
1) Cho tam giác ABC có AB < AC. Đường cao AH. Gọi M,N,P lần lượt là trung điểm của các cạnh BC, AC, AB.
a/ chứng minh PN là đường trung trực của AH
b/ chứng minh tứ giác MNPH là hình thang
2) cho hình thang cân ABCD. có AB // CD. I là giao điểm của 2 đường chéo AC và BC. góc AIB = 60 độ. Gọi B' , C' lần lượt là hình chiếu của B, C trên AC và BD.
a/ Chứng minh A, B', C' = 1/2 BC
b/ gọi E là trung điểm BC, chứng minh tam giác EB'C' là tam giác đều